Academic Year :	2023-24	Semester:	1	Course Code :	CV1011	
Course Title :	Mechanics of Materials					
Tabulated By:	Liu Yu and Ivan Au					

Question No	Answer
1	(a) $M_A = T(-0.0728i+0.233j)$, (b) $T = 1.07 kN$, (c) $A_{min} = 55.4 mm^2$
2	(a) $\Sigma F = 12kN \ / \ , x=5.5m$, (b) $Ax = 0$, $Ay = 5.4 \ kN \ / \ , Ey = 6.6 \ kN \ /$
3	a) 0.629 MPa; b) 4.92 MPa
4	a) {10, 0}, 5 MPa; b) 0.375, 0; c) 0.5

Academic Year :	2023-24	Semester :	1	Course Code :	CV1012	
Course Title :	Fluid Mechanics					
Tabulated By:	LSY					

Question No	Answer
1 a	P(air) = 21346.6 Pa, P(gauge reading) = 60586.6 Pa
1b	Fh = 117.72 kN, Fv1 (rect) = 78.48 kN, Fv2(quadrant) = 61.638 kN, F = 140.12 kN
1c	h =1.39m, BM = 1.85m, BG < 1.85 to be stable
2a	P1 - P2 = 6180.3 Pa, Q = 0.028 m3/s
2b	V2 = 12. 08 m/s, V3 = 12 m/s, F = 722.4 N
3a	refer to notes
3b	Lp = 4.49m, Fp = 1762.8 N
3c	Q = 0.2 m3/s
4a	hp = 13.17 m, Power P = 1014.3W
4b	SCC: H = 10 + 774.63 Q2, Q = 0.11 m3/s, new PCC: H = 80-70 Q2, Q = 0.288 m3/s

Academic Year :	2023-2024	Semester :	1	Course Code :	CV 2011	
Course Title :	Structural Analysis I					
Tabulated By :	Li Bing & Fu Y G					

Question No	Answer
Q1	$a = 0.0 \ kN$; $b = 12.5 \ kN$ $FD = -0.745P$; $AE = -0.47P$
Q2	Support forces (45 KN ;67.5 KN;57.6 KN/115 KNm) M(0;45;0;67.5;0;115) KNm
Q3	M_A=67.5kN·m; v_c=-1485/4EI; θ_c=-90/EI;
Q4	Δ _E=1.638 mm; θ _B=0.00291 rad; Δ _B=21mm

Academic Year :	2023-2024	Semester :	1	Course Code :	CV2013
Course Title :	Engineering Geology	and Soil Mechanic	S		
Tabulated By :	Wu Wei				

Question No	Answer
2(a)(i)	141/27NE or 321/27NE
2(a)(ii)	24-25°
2(a)(iii)	150 m
3(a)(ii)	1.87 g/cm3
3(b)(i)	0.1 m
3(b)(ii)	2 ×10-6 and 2x10-8 m/s
3(b)(iii)	4.85 kPa
4(a)(i)	3.99 × 10-2 cm/s
4(a)(ii)	11 kPa
4(b)(i)	134 kPa, 12 kPa
4(b)(ii)	96 kPa
4(b)(iii)	0.688 m
4(b)(iv)	28.40%

Academic Year :	2023-2024	Semester :	1	Course Code :	CV 3011	
Course Title :	Reinforced Concrete	Design				
Tabulated By:	Li Bing & Qian SZ					

Question No	Answer
Q1	M=238.5 KNm deesign is adequated.
Q2	Asc=3959 mm2 Ast=5888 mm2 Asw/s=1.29
Q3	(a) As,ms=243 mm2, As, sup=318 mm2 (b) deflection control is ok
Q4	(a) M=310 kNm (b) 8 H32 bars

Academic Year :	2023-24	Semester :	1	Course Code :	CV3013	
Course Title :	Foundation Enginee	ering				
Tabulated By :	EC Leong			_		

Question No	Answer
1	(c) Relative density = 49.3%, (d) Relative density = 53.2%
2	(b)(i) Design resistance = 92.9 kN, Design load = 155 kN; (b)(ii) Settlement = 5 mm
3	(a) Length of pile = 11 m.
4	(b) ODF = 1.78; (c) ODF = 1.29; (d) ODF = 3.16

CV3014 – TRANSPORTATION ENGINEERING

Numerical answers:

1, (a) 0.83 (b) 250, 92, 40, 3680 (c) 162+70
2, (a) 47/11, 32/11, 86/11, 118/11, (b) 27/11, 2/11, 26/11, 138/11 (c) 32/11, 37/11, 86/11, 78/11 (d) 5.875, 0.125, 1.25, 4.5, 5.75
3, (a) NA (b) 6, 5.25
4, (a) 120, 130, 150, 400 (b) NA (c) NA.
5, NA.

Academic Year :	2022-23	Semester :	1	Course Code :	CV3017	
Course Title :	Urban Water Circula	arity		_		
Tabulated By:	Zhou Yan			_		

Question No	Answer
1 (a)	1728m2, L=50m, W=8.64m, H=3.125m
1(b)	>, >, <
1(c)	0.72m
2(d)	1880m3
2(e)	23.5mg/L.min, 75mg/L.min
3(a)	0.212m
3(c)	80.7m3
4(b)	47.66mg/L, 61.82mg/L, 20.5mg/L
4(c)	74.20%

Academic Year :	2022-23	Semester:	1	Course Code :	CV4011
Course Title :	Project Planning and	Management			
Tabulated By:	Teoh Bak Koon				

Question No	Answer
Q1	Not Applicable
Q2(a)	112 days
Q2(b)i	119 days
Q2(b)ii	113 days
Q3(a)	22 months
Q3(b)i	BCWP = SGD 405.5k
Q3(b)ii	SGD 634k, SGD 629k
Q4	Not Applicable

Academic Year :	2022-23	Semester :	1	Course Code: CV4012	
Course Title :	Project Planning and I	Management	-		
Tabulated By:	Teoh Bak Koon				

Question No	Answer	
Q1	Not Applicable	
Q2(a)	112 days	_
Q2(b)i	119 days	
Q2(b)ii	113 days	
Q3	Not Applicable	4
Q4(a)	22 months	
Q4(b)i	BCWP = SGD 405.5k	
Q4(b)ii	SGD 634k, SGD 629k	

Academic Year :	2023-24	Semester :	1	Course Code :	CV4101	
Course Title :	CV4101 Structural A	analysis III				
Tahulated By	Fu Yuguang, Yang Ya	aowan				
i abulated by .	i u Tuguang, Tang Ta	dowell				

Question No	Answer
1	(a) a1=22.5 mm; M1_p'=68kN·m; (b) a2=8 mm; M2_p'=75.5kN·m; (c) N=1120kN; M_p=62.4kN·m
2	(a) n_ph=4; (b) G= k(6M_1+6M_2); $\lambda_A=(4M_1)/27$; $\lambda_B=(M_1+M_2)/9$; $\lambda_C=(4M_1+2M_2)/45$; $\lambda_D=(2M_1+2M_2)/27$; $\lambda_E=(2M_1)/9$; $\lambda_F=(2M_1+4M_2)/45$; M_1=M_2=7.5; G=90k;
3	(a) P_cr = 1.43 (π^2 EI)/L 2 ; (b) P_cr = 0.544 (π^2 EI)/L 2
4	(a) translational spring stiffness = $12EI/L^3$; 0.25 ($\pi^2 EI$)/ $L^2 < P_cr < 2.05 (\pi^2 EI)/L^2 (b) P_cr = 1.14 (\pi^2 EI)/L^2$

Academic Year :	2023-24	Semester :	1	Course Code :	CV4102	
Course Title :	Advanced Steel Desig	n				
Tabulated By :	Lie Seng Tjhen and Zh	ao Ou				

Question No	Answer
1	(a) β =0.8, γ =8, N1,Rd = 1579.75 kN, N2,Rd = 1579.75 kN; (b) N1,Rd = 1342.79 kN, N2,Rd = 1342.79 kN; (c) g = 60 mm
2	(a) 233.7; (b) 234
3	(a) 3180
4	(a) 45, 16.67, 25.83

Academic Year :	2023-24	Semester :	1	Course Code: CV4107
Course Title :	Engineering Economics a	and Finance		
Tabulated By :	rtiong and Kim jinwoo			
Question No			Answer	
2	(a) x=3.68%; (b) ROR for	B=7.6%		
3		NPV	s for (b) \$867	73.6
4	(a) NPV: A=\$1518; B=\$2	682; C=\$-610		
	b. option I: \$348; II: \$50	0		

-		

Academic Year :	2023-24	Semester :	1	Course Code :	CV4110
Course Title :	Excavation and Reta	aining Walls			
course ritie .	Excuvation and net	anning vvans			
Tabulated By :	Yi Yaolin			_	

	_
Question No	Answer
1c	1.45, 1.68
2a	4.03
2c	1.04
Q3(b)	1.377
Q3(c)	0.985
Q4(a)	350.2, 510, 459, 25.5
Q4(b)	15.2 mm

Academic Year :	2023-24	Semester :	1	Course Code :
Course Title :	Traffic Engineering			
Tabulated By :	Lum Kit Meng			

Question No	Answer
1	$\chi^2_{\text{observed}} = 0.726$; H _o not rejected; fits a negative exponential distribution
2	C_{m1} = 618 veh/h; C_{m9} = not control by stop sign; C_{m7} = shared lane capa
3	Cycle time = 170 s; Green times are respectively 38 s, 49 s, 28 s and 39
4	4(a) V = 5284 veh/h; 4(b) V= 6920 veh/h
5b(ii)	q = kv = 2245 veh/h
6(c)	x1=x2=1.2, x3=3.6, Tr=33.6 (before adding a link). After adding a link B taking BC is higher than taking BD. Paradox not observed.

CV4112

Academic Year :	2023-24	Semester :	1	Course Code :
Course Title :	Inland and Coasta	al Flood Management		_
Tabulated By :		Qin Xiaosheng		_
Question No			Answe	er
a	[18.2 79.2 25.4 15	5.2 11.6 10.0 9.0 8.2]		
b	(ii) 4900 m3/s; (iii	0) 0.0042		
a	0.47, 0.87, 0.39; (0.48; 1.73 m3/s		
b	(i) 197.2 m2/day;	0.266; (ii) 1.52 m; (iii)	0.544 m	
a	(ii) 2.26m			
SC .	(i) 89.4m (ii) -10.7	'm		
-c	52.5 kPa, 13.3 kPa	a		
-d	2.36 m			

CV4121	,
	I
	٠
	Ī

Academic Year :	2023-24	Semester:	1	Course Code :	EM5103
Course Title :	Water Resources M	anagement			
Tabulated By:	LSY			_	

	T
Question No	Answer
1	see notes
2	see notes
3	3a: see notes, 3b: reservoir capacity = 5810x10^3 m^3, 3c: UH = Runoff/6.22
4a	2 hr UH Table: Time(hr):UH = 0:0; 1:1.5; 2:8; 3:18.5; 4:21; 5:12.5; 6:4.5, 7:1;
4b	W = 1.9; C1 =-0.053; C2 = 0.579; C3 = 0.474.peak = 52.26 m^3/s

Academic Year :	2023-24	Semester :	1	Course Code:	EN1001
Course Title :	Environmental Che	mistry			
Tabulated By:	Grzegorz Lisak				

Answer				
this case, the total and The calculation indicated balanced.	ations is (15-8 =) 7 meg/l leates the equivalent Cation ations Ca ²⁻ 5.0 HCO ₂ 6.0 Ca(HCO 3) ₂ 5.0 Mg(HCO 3) ₂ 5.0 Mg(HCO 3) ₂ 1.0 Mg(HCO 5 ording to bar diagram, the Cl = 15 Milliequivalent per litre EW of Cl = 35.5/1 = Concentration of Cl 1 Total Hardness = ∑ (Ca 5 + Alkalinity = [HCO 2] + 2 At pH = 7.2 ⇒ [CO 2]	Eg.wt 22 20 12 23 18.6 48 ? 61 48 ? 61 of meg/l of cations equal ess than total cations. hand in MacRitchie Mg²² 4.0 Na² 6.0 SO₂² 2.0 Cr 7.0 10 e hypothetical combina MgSO4 2 meg/L,MgCl2 missing 7 meg/L must b. -8 = 7 meq/l (meg/L) = mg/L (meg/L) =	Reservoir water, is not 15 meq/l 15 meq/l 15 titions of compounds are Ca(HCO3)2 5 11 meg/L and NaCl 6 meg/L. 15 be Cl.	
	CO ₂ Ca ²⁺ Mg ²⁺ Na ⁺ Fe ³⁺ SO ₄ ⁻ ? HCO ₃ According to law of E this case, the total an The calculation indicabalanced.	CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Description

-	
4 (c) (d) (e)	$K = [NH3] \ [H+]/[\ NH4+] \\ [NH3] = K[\ NH4+]/[\ H+] \\ At \ pH = 7, \ [H+] = 10-7 \ and \ [NH4+] = 0.008M \\ NH4+ +2 \ O2(g) = \ NO3- + 2H+ +H2O \\ \Delta G^{\circ}f = -79.37 \ 0 \ 111.34 \ 0 \ -237.18 \ KJ/mol \\ \Delta G^{\circ}reaction = -111.34+ (-237.18) - (79.37) - 2(0) = -269.15 \ KJ/mol \ (<0, -ve) \\ Because \ \Delta G^{\circ}reaction < 0. \ Yes, the reaction will be thermodynamically favorable. Toxic NH4+ will be convert into NO3- forming eutrophication problem in treated wastewater. [NH3] = 5.74\times10-10 \ (7\times10-3)/10-7 = 4.018\times10-5 \ M \ at \ 25^{\circ}C^{\circ} Toxic \ to \ fish \ if \ [NH3] > 0.53\times10-3/17 = 2.94\times10-5M \\ Since \ [NH3] > 2.94\times10-5M, \ So \ water \ is \ toxic \ to \ fish \ at \ 25^{\circ}C C = CO \ e-kt \\ t0.5 = 0.693/k = 20 \ days \ B \ k = 0.03465 \ day-1 \\ At \ 100 \ days \ BC100 \ days = CO \ e-(0.03465)(100) = 3.13\times10-2 \ CO \\ Fraction \ remains = 3.13\%$

Academic Year :	2023-24	Semester:	1	Course Code :	EN2004	
Course Title :	GEO-ENVIRONMEN	T AND SOIL MECHA	NICS			
						_
Tabulated By:	Xunchang Fei			<u> </u>		

Question No	Answer					
1	N.A.					
2	b: O2 = 6340 g; CO2 = 6642 g. c: assume new concentration, X = 22.5 mg/L; sparged = 1123.5 g; remained = 876.5 g; removal = 56%.					
3	a: t = 5787 d. b: t = 46 d. c: t = 46 + 694 = 740 d.					
4	a: 1.87 g/cm3. b: dh = 0.1 m; k1 = 2e-6 m/s; k2 = 8e-6 m/s; σ' = 4.85 kPa.					
5	a: Tv = 4e-2 cm/s; u = 11 kPa. b: u = 134 kPa; σ' = 12 kPa; σ' = 96 kPa; sc = 0.688 m; wc = 28					

EN3001 - Solid and Hazardous Waste Management

Numerical answers:

Q2(b); 54.57 x 10⁶ GJ

Q2(c); 26.26×10^6 GJ (incineration) and 8.93×10^6 GJ (anaerobic digestion)

Q3(a); 5290 m³

Q3(b); 70.8%

Q4(d); 0.095%

Q5(a); 0.12 kg/day (Toluene), 0.0862 kg/day (Benzene) and 0.048 kg/day (Dichloroethane)

Q5(bii); 13 hr

Academic Year :	2023-24	Semester :	1	Course Code :	EN3002
Course Title :	Wastewater Engineer	ring			
Tabulated By:	СТН			-	

Question No	Answer
1a(i)	66.6 kg/d
2a(i)	33.3%
2a(ii)	100%
2b	0.0323 m, 0.136 m
3b	200 mL/g
3c	5731 m ³ /d
3d(i)	9.2 m
3d(ii)	1440 m ³ /d
3d(iii)	202 mg/L
4(b)	7.76 m, 12.68 m

Academic Year :	2023-24	Semester :	1	Course Code :	EN3004
Course Title :	Air Pollution Control	Engineering			
Tabulated By:	Wang Rong				

Question No	Answer
1	(b) 2.14 W m ⁻² 66.4%
2	(a) 7.6×10^{-10} ppm (b) $C_{\text{max}} = 9.77 \times 10^{-7} \text{ ng m}^{-3}$; $C_{\text{ground}} = 1.96 \times 10^{-10} \text{ ng m}^{-3}$
3	(d) η(gravity settler)=43.6% η(cyclone)=98.1%
4	(c) Coal amount = 6×10^5 kg/hr O_2 added = 8977.45 kg/hr

Academic Year :	2023-24	Semester :	1	Course Code :	EN3006
Course Title :	Energy Resources E	ngineering			
Tabulated By :	Tuti Lim			_	

Question No	Answer
1	(a)(i) 1.51%; (ii) Oil: 43.1 years & NG: 40.3 years
2	(a) BTU/US\$: 1,541 (A); 6,834 (B) and 5,929 ©
3	(a)(i) 84,826 kg (b)(i) 43200 GJ; 21.85 m
4	(a) 492> 500 turbines

Academic Year :	2023-24	Semester : _	1	Course Code :	EN4001
Course Title :	Environmental Impact A	Assessment &	Monitoring		
Tabulated By:	СТН				
Question No			Answer		
3a	0.958, 0.958				
3b	3613 kg/h, 16875 kg/h				
	1				

Academic Year :	2022-23	Semester :	1	Course Code :	CV4116
Course Title :	Coastal Engineering				
Tabulated By :	Prof Adrian Law and A	/P Edmond Lo		_	

Question No	Answer
Q1	(a) (i) 80 ug/L ; (ii) 29 ug/L
Q2	(a) 497 m2/s; (b)152.3km, 172.8 km; (c) 1.06 x 10^-6 (1/s)
Q3	(b) (i) Lm = 0.445m; jet-like x = 0.25m, plume-like x = 2.75, 3.0, 3.25 and 3.5, transition for other x
Q4	-

Academic Year :	2023-24	Semester:	1	Course Code:	MT1001
_	_				

Course Title: Mathematics I for Maritime Studies

Tabulated By: Yan Ran

Question No	Answer
1(a)(i)	0≤x≤10,000
1(a)(ii)	decrease
1(a)(iii)	price = 6
1(b)(i)	both markets MC=4
1(b)(ii)	total profit=33.3
1(b)(iii)	total profit = 19.03
1(c)	$\frac{24x^5(x^3-7)^3-6x^2(x^3-7)^4}{4x^6}$
2(a)	The last blank: 11596.93
2(b)	≈22,527.19
3(a)	$\frac{2}{3}(1+\ln x)^{\frac{3}{2}}-2(1+\ln x)^{\frac{1}{2}}+C$
3(b)	$\frac{1-\ln^2}{2}$
3(c)	3.163
4(a)	- 2" yz + 2 very
4(b)	y*=20000
4(c)	1/48

Academic Year :	2023-24	Semester:	1	Course Code: MT4001	
•					

Course Title: SHIPPING LOGISTICS

Tabulated By: DR KELVIN PANG

Question No	Answer
1a(i)	Demand D= 450 kg per week = (52×450) kg per year Fixed ordering cost S = \$600 per order Unit cost C = \$6 Percentage holding cost per year h = 0.20 EOQ = $\sqrt{(2 \times 52 \times 450 \times 600)/(0.20 \times 6)}$ = 4,837.36 kg At Q = EOQ, annual total cost = $(EOQ/2)hc + (D/EOQ)S = [(4,837.36/2) \times 0.2 \times 6] + [((52 \times 450)/4,837.36) \times 600]$ = \$5,804.83
1a(ii)	Since the product's shelf-life is 8 weeks, the distributor can only store 8 weeks of demand, i.e., $8 \times 450 = 3,600 \text{ kg}$. With considerations to the limited storage space and minimum order quantity, the new optimal order quantity is $3,600 \text{ kg}$ (shelf-life constraint). Total cost = $$1,530.82 + $1,435.07 = $2,965.89$ In this case, we equate the total costs associated with ordering at the EOQ and the breakpoint levels for the retailer in determining the discount level.
1(b)	$S^* = $ fixed transportation cost + product-specific order costs $= $2,000 + 3($1,200) = $5,600$ Optimal order interval for joint ordering $n^* = $ $= $ $\forall [(8,000x0.20x600 + 15,000x0.20x600 + 12,000x0.20x600)/(2x5600)] = 19.36 $ times per year Optimal lot size for each model: QA = $8,000/19.36 = 413$ (rounded off to nearest integer) QB = $15,000/19.36 = 775$ (rounded off to nearest integer) QC = $12,000/19.36 = 620$ (rounded off to nearest integer)

	Terminal	er unit of input	ut 1/Input	Output 2/ln	mut
	A	8	ut 1/Input	Output 2/In	iput
	B	4		8	
	С	3		3	
	D	3		6	
	E	4		8	
	The black cur a terminal that values of term feasible region. The relative e	B(E) B(E) C C Output 1/Input we is the efficier th is efficient (ha in als A, B, and in (and thus with fficiency of term	A A A A A A A A A A A A A	point on the effi iency 1). Henc 1. Points C and ncy < 1).	icient frontier represer e, the relative efficien d D are strictly inside t
	So, the relativ	es of point C' ar e efficiency of to the relative effic	erminal C is $\frac{3}{6}$ =	$=\frac{3}{6}=0.5.$ als A, B, C, D,	and E is 1, 1, 0.5, 0.7
	So, the relativ To conclude, t and 1.	e efficiency of te	erminal C is $\frac{3}{6}$ =	$=\frac{3}{6}=0.5.$ als A, B, C, D,	and E is 1, 1, 0.5, 0.7
	So, the relativ To conclude, t and 1.	e efficiency of to the relative effic	erminal C is $\frac{3}{6}$ = iency of termin	als A, B, C, D,	
	So, the relativ To conclude, t and 1. EDD: sequence	e efficiency of to the relative effic finish time	erminal C is $\frac{3}{6}$ = iency of termin	tardiness	Tardiness cost
	So, the relativ To conclude, t and 1. EDD: sequence J1	e efficiency of to the relative effic finish time 15	erminal C is $\frac{3}{6}$ = iency of termin Due date 25	tardiness	Tardiness cost
	So, the relativ To conclude, t and 1. EDD: sequence J1 J4	finish time	Due date	tardiness 0 7	Tardiness cost 0 14
	So, the relativ To conclude, t and 1. EDD: sequence J1 J4 J3	finish time 15 33	Due date 25 26 45	tardiness 0 7	Tardiness cost 0 14 21
	So, the relative To conclude, the and 1. EDD: Sequence J1 J4 J3 J2	finish time 15 33 59	erminal C is $\frac{3}{6}$ = iency of termin Due date 25 26 45	tardiness 0 7 14 41	Tardiness cost 0 14 21 123
	So, the relative To conclude, the and 1. EDD: sequence J1 J4 J3 J2 J5	finish time 15 33 59 91	Due date 25 26 45 50 60	tardiness 0 7	Tardiness cost 0 14 21
	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine	finish time 15 33 59 91 118 ess cost = US	Due date 25 26 45 50 60 50303.	tardiness 0 7 14 41	Tardiness cost 0 14 21 123
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine	finish time 15 33 59 91	Due date 25 26 45 50 60 50303.	tardiness 0 7 14 41	Tardiness cost 0 14 21 123
(d)	So, the relative To conclude, the and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp	finish time 15 33 59 91 118 ess cost = US	Due date 25 26 45 50 60 50303.	tardiness 0 7 14 41	Tardiness cost 0 14 21 123
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp	finish time 15 33 59 91 118 ess cost = US	Due date 25 26 45 50 60 60 60 60 60 60 60 60 6	tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123 145
(d)	So, the relative To conclude, it and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp SPT: Sequence	finish time 15 33 59 91 118 ess cost = US an is 118 da	Due date 25 26 45 50 60 60 60 60 60 60 60 60 6	tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makespense SPT: Sequence J1	finish time 15 33 59 91 118 ess cost = US an is 118 da finish time	Due date 25 26 45 50 60 5D303. ys.	tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123 145 Tardiness cost
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp SPT: Sequence J1 J4	finish time 15 33 59 91 118 ess cost = US ean is 118 da finish time 15	Due date 25 26 45 50 60 60 60 60 60 60 60 60 6	tardiness 0 7 14 41 58 tardiness 0 7	Tardiness cost 0 14 21 123 145 Tardiness cost
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp SPT: Sequence J1 J4 J3	finish time 15 33 59 91 118 ess cost = US an is 118 da finish time 15 33	Due date 25 26 45 50 60 60 60 60 60 60 60 60 6	tardiness 0 7 14 41 58 tardiness 0 7 14 41	Tardiness cost 0 14 21 123 145 Tardiness cost
(d)	So, the relative To conclude, the and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makes part: Sequence J1 J4 J3 SPT: Sequence J1 J4 J3 J5	finish time 15 33 59 91 118 ess cost = US ean is 118 da finish time 15 33 59 86	Due date 25 26 45 50 60 60 60 60 60 60 60 60 6	tardiness 0 7 14 41 58 tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123 145 Tardiness cost 14 21 65
(d)	So, the relative To conclude, the and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makespense SPT: Sequence J1 J4 J3 J5 J2 J5 J2 J5 J2 J5 J2 J5 J2	finish time 15 33 59 91 118 ess cost = US ean is 118 da finish time 15 33 59 118	Due date 25 26 45 50 60 50 Due date 25 26 45 50 60 50 Due date 25 26 45 50 50 50 50 50	tardiness 0 7 14 41 58 tardiness 0 7 14 41	Tardiness cost 0 14 21 123 145 Tardiness cost
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp SPT: Sequence J1 J4 J3 J5 Total tardine The makesp	finish time 15 33 59 91 118 ess cost = US an is 118 da finish time 15 33 59 86 118 ess cost = US	Due date 25 26 45 50 60 50303. ys. Due date 25 26 45 50 60 50304.	tardiness 0 7 14 41 58 tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123 145 Tardiness cost 14 21 65
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp SPT: Sequence J1 J4 J3 J5 Total tardine The makesp	finish time 15 33 59 91 118 ess cost = US ean is 118 da finish time 15 33 59 118	Due date 25 26 45 50 60 50303. ys. Due date 25 26 45 50 60 50304.	tardiness 0 7 14 41 58 tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123 145 Tardiness cost 14 21 65
(d)	So, the relative To conclude, to and 1. EDD: Sequence J1 J4 J3 J2 J5 Total tardine The makesp SPT: Sequence J1 J4 J3 J5 Total tardine The makesp	finish time 15 33 59 91 118 ess cost = US an is 118 da finish time 15 33 59 86 118 ess cost = US	Due date 25 26 45 50 60 50303. ys. Due date 25 26 45 50 60 50304.	tardiness 0 7 14 41 58 tardiness 0 7 14 41 58	Tardiness cost 0 14 21 123 145 Tardiness cost 14 21 65

Academic Year :	2023-2024	Semester :	1	Course Code :	MT4101
Course Title :	Intermodal Transpirtati	on			
Tabulated By :	TEO CHEE CHONG				
Question No			Answer		
(a)	24.55 knots				
(b)	3,500 TEUS and 2,450 T	EUs			
(c)(i)	667 TEUs				
(c)(ii)	42 hours and 8 hours				