Academic Year :	2022-23	Semester :	2	Course Code :	CV1011

Course Title : Mechanics of Materials

 Tabulated By :
 Au Siu Kui, Liu Yu (Part-time)

Question No	Answer
1	(a)M _A =-2.622T ₁ i+3.495T ₁ j; (b) T ₁ =45.8kN, T ₂ =26.7kN; (c) Ax=8.89kN, Ay=16.7kN, Az=40.0kN
2	(a)Ax=0, Ay=6kN ↑, Ey=6kN ↓; (c) $M(x) = 6x-2x^2$ (0≤x≤3)
3	(a) 60kN, 15kN, 4kN; (b) 1.6e-3 deg; (c) 0.849MPa, 0.4716 Mpa
4	(a)(i) 20MPa (70 deg), 6MPa (-20 deg); (ii) 7.64MPa, 4.5MPa; (b)(i) 72mm; (ii) 5.63Nm

Academic Year :	2022-23	Semester :	2	Course Code : CV 2011
Course Title :	Structural Analysis I			
Tabulated By :	LI Bing, Fu Yuguang			

Question No	Answer
Q1	18,42,42,42,18,0,0 KN
Q2	2.07, 4.71 KN; 4.14 KNm, 4.93,3.29 KN V 2.07, 4.93,4.71,3.29,4.93KN M: 4.14,2.07,9.86
Q3	11 KN, 39 KNm; 0,0, 29.5,73.125; -22.5, 4, -33.75, 4/3, -4.5, 3/4; -60.75, -1809
Q4	-68.284, 1.138 mm; 45 KN, 50 KN, -5 KN; 100 KNm; 1 KNm; 4 KNm; 0.00213 rad; 24 mm

Academic Year :	2022-23	Semester :	2	Course Code: CV2012

Course Title: Structural Analysis II

Tabulated By: Qian Shunzhi and Zhao Ou

Question No	Answer
1	N.A. as it is drawing (Influcen lines)
2	Ex=14.06kN(left), Ax=14.06kN(right), Ay=30kN(up), Ey=50kN(up)
3	(a) MAB=-75.5 kNm, MBA=208.9 kNm, MBC=-240 kNm, MBD=31.1 kNm; (b) VBA=142.2 kN, VAB=97.8 kN, VBC=40 kN, VDB=31.9 kN, VBD=8.1 kN
4	(a) R1y=12.4 kN, M1θ=16.8 kNm, R2y=30.5 kN, R3y=17.1 kN, M3θ=-10.8 kNm

Academic Year :	2022-23 Semester : 2 Course Code : CV2014
Course Title :	Geotechnical Engineering
Tabulated By :	Wu Wei
Question No	Answer
1(a)(i)	33°, 26°
1(a)(ii)	26°
1(b)(i)	14.5°, 60 kPa
1(b)(ii)	58 kPa, 225 kPa
2(a)	15.84 kPa, 12 kPa, 14 kPa
2(b)	16.33 kN/m
3(a)(i)	507.6 kN/m
3(a)(ii)	38.24 kPa
4(d)	98.5%, 32.25%

Academic Year :	2022-23	Semester :	2	Course Code: CV2019	
-----------------	---------	------------	---	---------------------	--

Course Title : Matrix algebra and numerical methods

 Tabulated By :
 Au Siu Kui, Liu Yu (Part-time)

Question No	Answer
1	(a) 3, -2 1; (b) -32, -6; (c) -512
2	(a) -1, 3; [-2; 1]/sqrt(5); (b) (i) 1
3	(a) x(7) \approx 22.64m, v(7) \approx 4.84m/s, a(7) \approx 0.37m/s ² ; (b) A=10.03m ² , $\int x dA = 57.61m^3$, x _c =5.75m
4	(a) v=50.39 m/s (b) v=57.53 m/s

Academic Year :	2022-23	Semester :	2	Course Code : CV2020
Course Title :	Water Resources Er	ngineering		
Tabulated By :		Qin Xiaosheng		
Question No			Answ	ver
1a	Crest Vc=1.213, flow	v per width = 0.182	m2/s, disc	harge Q = 5.459 m3/s
1b	normal depth in B-0	C: 1.4053 m		
1c	flow depth at the d	epression: 1.9152 m	1	

1c	flow depth at the depression: 1.9152 m
1d	height of end-sill=0.6088 m
2b	14.8 million m3
2c	(1) 108 km2, (2) [0 20 40 60 30 0] m3/s for t =[0 2 4 6 8 10], (3) [0 80 240 400 360 120 0] m3/s
3a	[0 22 36 46 30 12 8 0] m3/s
3c	(1) 1,184,000 m3, (2) [30 30 25 52.5 161.25 225.625] m3/s

Academic Year :	2022-23	Semester :	2	Course Code : CV3012
Course Title :	Steel Design			
Tabulated By :	Lie Seng Tjhen			
Question No			Answer	
Q1.(a)	BM at A = 428.10 x	2 = 856.22 kNm; B	M at C = 85	6.22 + 46.95(3.5) = 1020.53 kNm
	V at B = 428.10 - 38	1.15 = 46.95 kN; V	at C = 46.9	5 - 455.17 = -408.22 kN
Q1.(b)	LTB check for segme	ent BC is NOT OK.		

	V at B = 428.10 - 381.15 = 46.95 kN; V at C = 46.95 - 455.17 = -408.22 kN
Q1.(b)	LTB check for segment BC is NOT OK.
Q1.(c)	Additional moment capacity = 441.76 kNm
Q2.(a)	BM at B = 1023.75 kNm; BM at C = 877.5 kNm
	V at A = 341.25 kN; V at B and C = -48.75 kN; V at D = -438.75 kN
Q2.(b)	A-Type(c)=341.25kN; B-Type(a)=390kN; C-Type(a)=390kN; D-Type(c)=439.75kN
Q2.(c)	Web bearing and buckling resistance, FRd = 819.6 kN
Q3.(a)	NEd = 2371.5 kN; My,Ed = 22.770 kNm; Mz,Ed = 16.675 kNm
Q3.(b)	The 260 x 260 x 108 kg/m SHS section is satisfactory.
Q3.(c)	The 260 x 260 x 108 kg/m SHS column is still adequate to carry the total
	design actions.
Q4.(a)	A required = 90350.815 mm2
Q4.(b)	A effective = 1486.4c + 10553.44;
Q4.(c)	F = 1383.285 kN; T = 103.285 kN
	A effective = 4c2 + 628.4c + 4260; c = 93.251 mm; t = 37.345 mm
	The 50 mm thick base-plate is still adequate to resist the total design actions.

Academic Year :	2022-23	Semester :	2	Course Code : CV3016	
Course Title :	Construction Techno	logy and processes			
Tabulated By :	Rtiong				

Question No	Answer
1	no numerical answer
2	nil
3	min number of trucks = 10 . Cost= \$29550.
4	nil

Academic Year :	2022-23	Semester :	2	Course Code :	CV4111
Course Title :	Ground Engineering				
Tabulated By :	Yi Yaolin				

Question No	Answer
1.a	0.67
1.c	6 m
2.c	1.78 yr
2.d	0.371 > 0.355

Academic Year :	2022-2023	Semester :	2	Course Code : CV4113
-				

Course Title : Highway Engineering

Tabulated By: Lum Kit Meng

Question No	Answer					
1(b)	5.69 million ESAL					
2(b)	Fatigue damage = 137.2% and Erosion damage = 120.2%					
3(a)	(i) Noise level = 73.2 dB; (ii) Barrier height = 1.76 m					
4(a)	(i) Overland flow path length = 12 m; Time of concentration = 1.94 minutes; Rainfall intensity = 205.74 mm/hr; (ii) Sheet flow depth = 4.46 mm					

Academic Year :	2022-23	Semester : 2	Course Code : CV4120		
Course Title :	Advanced Reinforce	ed Concrete			
Tabulated By :	Tan Kang Hai				
Question No			Answer		
1(a)			2.80 m < L <18.1 m		
2(a)(i)	M _{ult} = 3557 kNm				
2(a)(ii)			$A_{s} = 1801 \text{ mm}^{2}$		
2(b)(i)			V _{Ed,1d} = 651.5 kN		
2(b)(ii)			$A_{sw}/s = 0.395$		
3(a)			$w = 12.9 \text{ kN/m}^2$		
3(b)(i)			M _{max} = 6.45 kNm		
3(b)(ii)			M _{max} (hogging) = 25.8 kNm		
			M _{max} (sagging) = 14.51 kNm		
			ratio = 1.78		
3(c)(i)	$A_{\rm s} = 135.7 {\rm mm}^2 / {\rm m}$				
3(c)(ii)	$A_s = 499.5 \text{ mm}^2/\text{m}$ (hogging) ; $A_s = 280.9 \text{ mm}^2/\text{m}$ (sagging)				
4(b)			beta cannot exceed 0.5		

Academic Year : 2022	-23 Semester :	2	Course Code: CV5101
----------------------	----------------	---	---------------------

Course Title: Civil engineering and sustainable build environment

Tabulated By: Wang Zhiwei, Darren Sun, Yi Yaolin, David Chew

Question No	Answer
A2	(a) 875; (b) 127322
В	DCBC
с	DDBBDB
D1	DBADCACC

Academic Year :	2022-23	Semester :	2	Course Code :	EM5101
Course Title :	Environmental Quality				

Tabulated By: Xunchang Fei

Question No	Answer
1	all text
2	b: 342.5 lpcd; e: 350 mg/L 57% 43%;
3	all text
4	all text
5	false false false

Academic Year :2022-23Semester :2Course Code :EM5107
--

Course Title : Environmental, Health and Safety Management

Tabulated By: Hor Nam Chook

Question No	Answer
2(d)(ii)	TWA8 concn for TEA = 0.375 ppm, C/PEL = 0.375 TWA8 concn for MeOH = 25 ppm, C/PEL = 0.125 Sum of C/PEL = 0.50 (< 1)
3(b)(i)	SPL = 86.6 dBA
3(b)(ii)	Leq = 83.6 dBA
3(d)	RWL (origin) = 8.95 RWL (destination) = 7.55 LI (origin) = 0.56 LI (destination) = 0.66
5(a)	C (mg/m3) = 0.075 mg/m3 C (ppm) = 0.029 ppm
5(e)	BOD5 (total) = 61 mg/L BOD5 (wastewater) = 2,050 mg/L

Academic Year :	2022-23	Semester :	2	Course Code : EN2002
Course Title :	Environmental Bio	logy and Microbiolog	SY.	
Tabulated By :	Cao Bin			
Question No				Answer
2(2)	S = 5 $E = 1.00$ at t	- 0· S - 5 E - 0 865 a	t t - 7 day	r = 4 = 0.856 at t = 14 day: S = 4 = 0.720 at t = 21 day

2(a)	S = 5, E = 1.00 at t = 0; S = 5, E = 0.865 at t = 7 day; S = 4, E = 0.856 at t =14 day; S = 4, E = 0.730 at t = 21 day
3(b)	6 × 10^6 CFU/mL

Academic Year :	2022-23	Semester :	2	Course Code : EN2003	
					-

Course Title : Water Supply Engineering

Tabulated By: Grzegorz Lisak

Question No		Answer							
	Find Q in each pipe using the <u>Hardv Cross</u> method. L ₁ =1000m, L ₂ =1200m, L ₃ =1200m; D ₁ =300 mm, D ₂ =200mm, D ₃ =300mm; C =100. For the initial trial: assume Q ₁ = 1.5 m³/s, then Q ₂ = -0.5 m³/s, Q ₃ = -2.0 m³/s K = 10.67 L C ^{-1.85} D ^{-1.8⁻}								
	<u>Fir</u>	<u>st</u> al:							
	Pipe		к	Q	2 H = KQ ^u		H/C	2	$\Delta Q = -\frac{\Sigma H_{c}}{\alpha \sum \left(\frac{H_{c}}{Q_{c}}\right)}$
	1 749			1.5 1586.2		5.2	1057.5		
	2 6			6 0.5 1796.5		6.5	3593.0		0.30
	3		899 - 2.0 - 324		0.9	1620.5	00		
2 (a)		<u>Sec</u>	<u>xond</u>			HJ1.2	2-027	0.8	Adjust Q in all the pipes: Q1 = $1.5 + (0.30) = 1.80$ Q2 = $-0.5 + (0.30) = -0.20$ Q3 = $-2.0 + (0.30) = -1.70$
		Pi	pe	к	Q	H = K(2*	H/Q	$\Delta Q = -\frac{\Sigma H_i}{\alpha \Sigma \left(\frac{H_i}{Q}\right)}$
		1		749	1.80	2545.4	14	416.1	
		2		6476	- 0.20	-340.7	16	582.2	0.02
		3		899	- 1.70	-2405.9		413.2	
						Σ =- 201.2	ε Σ	=4511.	.4

	(i) Total	daily demanc	= 1800+4200-	+6600+7700	+10700+4000	= 35,000 m ³ /	d		
(ii) Qu = 35000/(12*3600) = 0.81 m³/s									
	Time	(hour)	Inflow	Draft	Deficiency	Cumulative	1		
		Arrour /	(m^3)	(m^3)	Dencionary	Deficiency	-		
	from	to	((11.07		Denotorio			
	0	4		1800	1800	1800			
	4	8		4200	4200	6000			
	8	12	11666 67	6600	-5066.66	933			
2 (b)	12	16	11666.67	7700	-3966.66	-3033			
	16	20	11666.67	10700	-966.66	-4000			
	20	24		4000	4000	0	-		
		sum=	35000	35000	1000	v			
	(i∨) if the 6000+(6600, 2000. Hence	 (iv) if the operating time is moved by 2hr, the maximum cumulative deficiency would increase to 6000+(6600/2) = 9300, while the minimum cumulative deficiency would increase to -4000/2 = -2000. Hence, the storage would increase to 9300+2000 = 11300 m³ 							
	(a) Dosa Chlorine de (b) (i) K 3 (ii) 2.1% 21000 (iii) Usage o 36 543	(a) Dosage = $6.87 \times 10^{6}/16.2 \times 10^{6} = 0.424 \text{ mg/l}$ Chlorine demand = $0.424 - 0.19 = 0.234 \text{ mg/l}$ (b) (i) Kilograms of hypochlorite powder for 2.1% solution $= \frac{111l \times 1 \text{ kg/l} \times 2.1\%}{0.72} = 3.24 \text{ kg/l} = 3.21 kg$							

Academic Year : 2022-2023	Semester :	2	Course Code: EN3003
----------------------------------	------------	---	---------------------

Course Title : Environmental Transport Processes

Tabulated By: She Qianhong

Question No	Answer
1a	3.125 × 10^10 s
1b	(i) 797.9 mg/m3 or 797.9 μg/L ; (ii) 0.01596 kg/s; (iii) 400 m; 7.2 m/h or 0.002 m/s
2a	1.59×10^(-7)/s or 5.02/yr
2b	0.0828mg/L or 82.8μg/L
2c	77.13%
2e	(i) 0.174/d (ii) 45,550 m or 45.6 km; 0.2 mg/L; 9.5 mg/L
3a	100 h; 3.01 mg/L
3b	118.4 h
4a	(i) 5000 L/kg; (ii) 2 x 10^(-4) mg/L (iv) 2.5 x 10–4 mg/L
5a	(i) 2.61 x 10^(-5) m/s; 1.3 x 10^(-4) s^(-1) (ii) 4004 m
5b	2.59 x 10^(-3) cm/s ; 4.14 x 10^(-3) s-1

Academic Year :	2022-23	Semester :	2	Course Code :	EN3004

Course Title : Air Pollution Control Engineering

Tabulated By: Wang Rong

Question No	Answer
1	(b) C= 1252.7 ppm; V=1.9 m ³
2	(b) (i) $C_{(500,0,0)} = 28.48 \ \mu g/m^3$ (ii) C=20.43 ppb
3	(b) C _{out} =1158.2 mg/m ³ > 70 mg/m ³ (c) Efficiency: > 94%
4	(c) NO _x emission = 16.4 kg/min

 Academic Year :
 2022-2023
 Semester :
 2
 Course Code :
 EN4102

Course Title : Membrane Water Reclamation Technology

Tabulated By: She Qianhong

Question No	Answer
	Equation 1 when Y = 0.5, Pf = Pc = 60 bar, E = 3.3 kWh/m3
2b	Equation 2 when Y = 0.4, Pf = Pc = 50 bar, E = 3.125 kWh/m3 2 (50/nHPP – 50x0.6nERD)/(0.4x36) = 3.125
	Solving Equation 1 and 2, nHPP = 0.694 and nERD = 0.9
2c	Stage 1 Qf1100 Qp145 Qc155 Y10.45 Cf12000.0 Cp167.6 Cc13636.4 Cb12818.2 Cm13381.8 Fcp1.2 Rint0.98 Stage 2 Qf255 Qp218.7 Qc236.3 Y20.34 Cf23636.4 Cp2109.8 Cc25509.6 Cb24573.0 Cm25487.6 Fcp1.2 Rint0.98
	System
2b	(i) 25 LMH/bar (ii) 1238.9 LMH (or1250 LMH (iii) 738.75 LMH (or 750 LMH) (iv) 426.3 W/m^2 (or 434 W/m^2)
3c	2.7 × 1012 m^(-1); 1.44 × 1012 m^(-1) ; 0.18 × 1012 m^(-1)

Academic Year :	2022-2023	Semester :	2	Course Code: EN4104
-				_

Course Title : Environmental Hydraulics

Tabulated By: ALaw

Question No	Answer
1	(a) 5.714e5 m3/yr; (b) 16.67 ug/L; (c) decrease
2	(a) 48.3 ug/L; (b) 60.0 ug/L; (c) 39.7 km centered at 3 km downstream of discharge.
3	
4	(b) (i) 0.59 m3/s, 1.77 m4/s2; (ii) 0.40m/s; (iii) 4.0

Academic Year : 2022-23	Semester :	2	Course Code: MT1004	
-------------------------	------------	---	---------------------	--

Course Title : Introduction to meteorology and oceanography

Tabulated By: A/P Edmond Lo and Mr Jeremy Seow (PTL)

Question No	Answer
Q1	Ans to MCQ: A, D, A, A, C
Q2	-
Q3	-
Q4	-

Academic Year :	2022-2023	Semester :	2	Course Code: MT2004	
-----------------	-----------	------------	---	---------------------	--

Course Title : Mathematics II for Maritime Studies

Tabulated By: Tuti Lim; Wang Zhiwei

Question No	Answer
1(b)	P=399.11
2 (a)	35;48;56
4(a)	12
4(b)	81.20%

Academic Year :	2022-23	Semester :	2	Course Code :	MT3006
Course Title :	SHIP CHARTERING				
Tabulated By :	CAPT KH TAN				
Question No			Answer		
4(b)					
	Laytime as allowed d	ue cargo loaded =	7020.80 / 120	00 = 5d 20h 25m	
	Laytime commenced	12/1200 as Loadir	ng commence	d!(Time used b4	LT commence)
	** Despat	ch = 2d 6h	25 m		
	*** DHDWTSBE (De	spatch rate is half	that of Dem ,	i.e. 3000/2 = 1500) usd)
	Despatch WTS payab	le to Charterers =	54.42/24 x 15	500 USD	
		= 3401.	04 USD		

Academic Year: 2022-2023 Semester: 2 Course Code: MT4102	ademic Year :	2022-2023	Semester :	2	Course Code: MT4102	
--	---------------	-----------	------------	---	---------------------	--

Course Title : Distribution & Warehousing

Tabulated By: TEO CHEE CHONG

Question No	Answer
1(a)(i)	251
1(a)(ii)	2,931
1(a)(iii)	\$200,200
1(a)(iv)	\$17,420
3(a)	79.1%

Academic Year :	2022-2023	Semester :	2	Course Code : MT4103
Course Title :	Port Planning and Ope	rations		
Tabulated By :	Benson Chiu			

Answer
66 blocks
67 rmgs

Academic Year :2022-23Semester :2Course Code :SU2001

Course Title : URBAN PLANNING and DESIGN

 Tabulated By :
 David Chew; Evan Gwee

Answer
225043; 262614; 449890;-75110;-25504