Sham Nguyen Ark
ENE /4

1) $Q_{r}=4 \times 10^{4} \mathrm{~m}^{3} \mid y r \quad c_{r}=30 \mu \mathrm{~g} / \mathrm{L} \quad$ - Tributaries

Depth $=2 m$, Surface Area $A=10^{4} m^{2}, c=15 \mu \mathrm{~g} / \mathrm{L}$ - Bay

$$
c_{0}=0 \mu g / L \quad-\text { sea }
$$

$$
k=1 y r^{-1} \quad, k_{s}=0
$$

(a) Pestide from tributaries \rightarrow bay, mixing \& dilute, exchange with coastal area, decay \rightarrow steady state concentration

Pesticide in the bay is mixed with water from coastal area \rightarrow concenvation lower
(b) $E^{\prime}=\frac{a(c c-c)-\frac{4 \times 10^{3}(30-15)}{c-c}=4 x}{15-0}=4$

$$
V \frac{d c}{d t}=W+Q\left(c_{r}-c\right)-k V_{c}-E^{\prime}\left(c-c_{0}\right)
$$

Steady state: $V \frac{d c}{d t}=0 \Rightarrow E^{\prime}=\frac{W+Q\left(c_{r}-c\right)-k V_{c}}{c-c_{0}}$

$$
\begin{aligned}
& =\frac{0+4 \times 10^{4}(30-15)-1 \times\left(2 \times 10^{4}\right) \times 15}{15.0} \\
& =2 \times 10^{4} \mathrm{~m}^{3} / \mathrm{yr}
\end{aligned}
$$

(c) $c^{\prime}=1.5 \mathrm{mg} / \mathrm{L}=1500 \mu \mathrm{~g} / \mathrm{L}$

$$
\frac{m^{3}}{y r} \times \frac{\mu g}{L}=10^{-6} \frac{\mathrm{~kg}}{y r}
$$

Steady state: $O=W+Q\left(c_{r}-c^{\prime}\right)-K V_{c^{\prime}}-E^{\prime}\left(c^{\prime}-c_{0}\right)$

$$
\begin{aligned}
\Rightarrow W & =K V e^{\prime}+E^{\prime}\left(c^{\prime}-e_{0}\right)-Q\left(c_{r}-c^{\prime}\right) \\
& =1 \times\left(2 \times 10^{4}\right) \times 1500+2 \times 10^{4}(1500-0)-4 \times 10^{4}(30-1500) \\
& =118.8 \mathrm{~kg} / \mathrm{yr}
\end{aligned}
$$

(d) $\tau_{c}=\frac{1}{1 / \tau_{w}+k_{d}}=\frac{1}{4 \times 10^{4} / 2 \times 10^{4}+1}=\frac{1}{3} \mathrm{yr}$

$$
\text { Assume instant mixing, } c_{\text {spit }}=\frac{m}{v}=\frac{100}{2 \times 10^{4}}=5 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}=5 \mathrm{mg} / \mathrm{L}
$$

Concentration in the bay after the spill:

$$
\begin{aligned}
c & =c_{\text {initial }}+c_{\text {spill e }}-\pi / c_{c} \\
& =15 \times 10^{-3}+5 e^{-3 t}(\mathrm{mg} / \mathrm{L}) \\
c=1.5 \mathrm{mg} / \mathrm{L} & \Leftrightarrow 1.5=15 \times 10^{-3}+5 e^{-3 t} \\
& \Leftrightarrow t=0.405 \mathrm{yrs}
\end{aligned}
$$

2/(a) Estuary numb bet η imposed chavac eristic time $1 / \mathrm{h}$
Distance L_{d} for diffesion/dispersion $\sim(E / k)^{1)^{2}}$
Distance L_{a} for a direction $\sim U / k$
ratio square given $\eta=K E / U^{2}=\frac{L_{d}{ }^{2}}{L_{a}{ }^{2}}=\frac{\text { diffusive/dipersive distance }}{\text { advection distance }}$
η : measures transport by dispersion relative to advection for non-conservative substance $(k>0)$ over a time scale $1 / k$
$\eta \gg 1$: diffusion dominate $\eta \cong 1$: both $\quad \eta \ll 1$: advection predominate

For conservative slebstance, Peclet number (Pe) should be used.
(b). At anytime t, the distribution is symmetric \& bell-shaped in space

+ maximin concentaition is located at Ut unit of distance dow steam of the spill
- At any location x_{4} the concentration as function of time in skewed
+ spreading increases during time period which the concentration is observed
$+\sigma$ is not well - defined
+ maximum concentration happens at $t=\frac{x}{U}$

At time $t=0$, the concentration in maximum at the point of spillage and it hann't been pleaded
(c) (i) 95% encompassed $\Rightarrow 3.9 \sigma=300$

$$
\begin{aligned}
& \Leftrightarrow 3.9 \sqrt{2 E_{+} t}=300 \\
& \Leftrightarrow 3.9 \sqrt{2 E_{t}} 8=300 \\
& \Leftrightarrow E_{L}=3698 \mathrm{~m}^{2} / \mathrm{h}=0.103 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

(iii) Longitudinal dispersion caff, $E_{1}=0.011 \frac{U^{2} B^{2}}{\mathrm{H}_{4}}$

Distance needs to observe lateral concentrator profile canst to with en $\sim 1 \%$:

$$
L_{m}=0.4 \frac{U B^{2}}{E_{t}}
$$

For natural rivers, $E_{t}=0.6 \mathrm{H} \mu_{*}=0.6 \times 2 \times 0.134=0.161 \mathrm{~m} / \mathrm{s}$

$$
\Rightarrow L_{m}=0.4 \times \frac{0.023 \times 45^{2}}{0.161} \approx 115.71 \mathrm{~m}
$$

Location of meaxuvenent, $x=U t=0.035 \times 8 \times 60 \times 60=1 \mathrm{~km}$
\Rightarrow Ne significant Variation

$$
\left.\begin{array}{l}
\text { (ii) } \frac{m}{2 \sqrt{\pi E_{t}}=50 \mathrm{mg} / \mathrm{L}}=50 \mathrm{~g} / \mathrm{m}^{3} \\
m=\frac{\text { mass }}{\text { Area }}=\frac{\text { mass }}{90}
\end{array}\right\} \Rightarrow \frac{\text { mans }}{96 \times 2 \times \sqrt{\pi \times 369.8 \times 8}}=50
$$

$$
\begin{array}{cl}
3 /(a) C_{e}\left[M L^{-3}\right] & C_{0}\left[M L^{-3}\right] \quad Q_{0}\left[L^{3} T^{-1}\right] \\
M_{0}\left[L^{4} T^{-2}\right] & x[L] \\
n=5, \quad m=3 \Rightarrow 2 \pi \text { grapes }
\end{array}
$$

Use of, C_{0}, x, Q_{0} as repeating variates
(b) $d=0.1 \mathrm{~m}$

$$
Q_{0}=w_{0} A=w_{0} \pi \frac{d^{2}}{4}=0.0157 \mathrm{~m}^{3 /} \mathrm{s}
$$

$$
w_{0}=2 \mathrm{~m} / \mathrm{s}
$$

$$
M_{0}=w_{0} Q_{0}=0.0314 \mathrm{~m}^{4} / \mathrm{s}^{2}
$$

$$
c_{0}=1000 \mathrm{mg} / \mathrm{L}
$$

$$
\begin{aligned}
& \pi_{1}=c_{c} c_{0}^{a} x^{b} Q_{0}^{d} \\
& \begin{aligned}
& =\left(M L^{-3}\right)^{c}\left(M L^{-3}\right)^{a}(L)^{b}\left(L^{3} T^{-1}\right) d
\end{aligned} \\
& \left.\begin{array}{l}
M: 1+a=0 \\
L:-3-3 a+b+3 d=0 \\
T: d=0
\end{array}\right\} \Rightarrow \begin{array}{l}
a=-1 \\
b=0 \\
d=0
\end{array} \\
& \Rightarrow \pi_{1}=\frac{c_{c}}{c_{0}} \\
& \pi_{2}=M_{0} c_{0}^{a} x^{b} Q_{0} d \\
& =\left(L^{4} T^{-2}\right)\left(M L^{-3}\right)^{a}(L)^{b}\left(L^{3} T^{-1}\right)^{d} \\
& \left.\begin{array}{l}
M: a=0 \\
L:+4-3 a+b+3 d=0 \\
T:-2-d=0
\end{array}\right\} \Rightarrow \begin{array}{l}
a=0 \\
b=2 \\
d=-2
\end{array} \\
& \Rightarrow \pi_{2}=\frac{M_{0} x^{2}}{Q_{0}^{2}} \\
& \Rightarrow \frac{c_{c}}{c_{0}}=f\left(\frac{M_{0} x^{2}}{Q_{0}{ }^{2}}\right)
\end{aligned}
$$

(b)

$\mathrm{x}[\mathrm{m}]$	C_{c} $[\mathrm{mg} / \mathrm{L}]$	$\mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\mathrm{o}}$	$\mathrm{M}_{0} \mathrm{x}^{2} / \mathrm{Q}_{0}{ }^{2}$	$\mathrm{Q}_{0}{ }^{2} / \mathrm{M}_{0} \mathrm{x}^{2}$	$\mathrm{Q}_{0} / \mathrm{M}_{0}{ }^{1 / 2} \mathrm{x}$
2.5	198	0.198	795.7747	0.001257	0.035449
5	99	0.099	3183.099	0.000314	0.017725
7.5	66	0.066	7161.972	0.00014	0.011816
10	50	0.05	12732.4	$7.85 \mathrm{E}-05$	0.008862

$Q_{0}=0.015708 \mathrm{~m} 3 / \mathrm{s} \quad \mathrm{Mo}=0.031416 \mathrm{~m} 4 / \mathrm{s} 2 \quad \mathrm{Co}=1000 \mathrm{mg} / \mathrm{L}$
\Rightarrow Coefficient $=5.5742$
(c) CMC: protect against acute or lethal effects (in a brief period of time) - immediate effect CCC: protect against chronic effects (in contact for a long period of time) - long-term effect

CMC >= CCC, and is more restrictive
CCC "must" be at the edge of the regulatory mixing zone
(d) The analysis is inappropriate. The relationship in (b) only applies to the zone of established flow, not near the discharge location.
4. (a)

Unidirectional diffuser designs, $\theta_{\mathbf{O}} \sim 0$

Staged diffuser designs, $\theta_{0} \sim 0$

Alternating diffuser

* basically aims to shorten the diffuser length and hence lower the cost

$$
\begin{aligned}
& 4 /(b) w_{0}=\frac{Q_{0}}{A}=\frac{10}{10_{x} .1}=10 \mathrm{~m} / \mathrm{s} \\
& Q 2 D_{j e t}: q_{0}=w_{0} b=10 \times 0.1-1 \mathrm{~m}^{2} / \mathrm{s} \\
& M_{0}=q_{0} w_{0}=10 \mathrm{~m}^{3} / \mathrm{s}^{2} \\
& \frac{c_{c}}{c_{0}}=2.49_{0} M_{0}^{-1 / z} z^{-1 / 2}=2.4 \times 1 \times 10^{-1 / 2} \times 20^{-1 / 2} \approx 0.1697 \\
& \Rightarrow c_{c}=0.1697 c_{0}=0.1697 \times 600=101.82 \mathrm{ppm} \Rightarrow \text { doesn't meet requirement }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(c) \text { No of ports }=2 \Rightarrow Q_{0}=\frac{10}{2}=5 \mathrm{~m}^{3} / \mathrm{s} \\
& w_{0}=10 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \Rightarrow A=\frac{Q_{0}}{w_{0}}=\frac{5}{10}=0.5 \mathrm{~m}^{2}
$$

$$
M_{0}=w_{0}^{2} A=10^{2} \times 0.5=50 \mathrm{~m}^{4} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\frac{c_{c}}{c_{0}}=5.6 Q_{0} M_{0}^{-1 / 2} z^{-1} & =5.6 \times 5 \times 50^{-1 / 2} \times 20^{-1} \\
& =0.198
\end{aligned}
$$

$$
\Rightarrow c_{c}=118.8 \text { PPm doesn't meet }
$$

(d) No interference: $S_{N}>b_{c}=0.127 z=0.127 \times 20=2.54 \mathrm{~m}$

* (Need to check with Prof)!!!
\Rightarrow No of ports $<\frac{L}{S_{N}}+1=\frac{10}{2.54}+1=4.9$

$$
\Rightarrow N=4 \Rightarrow S_{N}=\frac{L}{N-1}=\frac{10}{4-1}=3.33 \mathrm{~m}
$$

$$
Q_{0}=\frac{10}{4}=2.5 \mathrm{~m}^{3} / \mathrm{s} ; w_{0}=10 \mathrm{~m} / \mathrm{s} \Rightarrow A=\frac{Q_{0}}{w_{0}}=0.25 \mathrm{~m}^{2}
$$

$$
M_{0}=w_{0}^{2} A=10^{2} \times 0.25=25 \mathrm{~m}^{4} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\frac{c_{c}}{c_{0}}=5.6 Q_{0} M_{0}^{-1 / 2} z^{-1} & =5.6 \times 2.5 \times 25^{-1 / 2} \times 20^{-1} \\
& =0.14
\end{aligned}
$$

$\Rightarrow c_{c}=84 \mathrm{ppm}<100$ ppm (Meet standards !!)

