1a) ISWM is a comprehensive waste prevention, recycling, composting + disposal program that selects and combine the most appropriate waste management activities based on local needs and conditions to protect human health and the environment.

4Rs = Reduce, Reuse, Recycle, Recovery

HCS	SCS		
Waste collection vehicles pick up container filled	All waste is unloaded into bigger trucks		
with waste to bring to disposal site and return empty container.	equipped with internal compaction.		
	Adv: Higher utilisation rate per vehicle can be		
Adv: Good for places that generate high volume	achieved		
of waste. Eliminates spillage. Large containers	Disadv: Not flexible method as bulky items		
can be carried away	cannot be collected. Capacity of vehicles may		
Disadv: Potential for low utilisation rate	not be able to cater to large generation of waste.		

1c) Method: Incineration

1b)

Advantages: Reduce volume, destroy contaminants, recovery of waste energy, stabilisation of waste (make waste non-reactive)

Disadvantages: High cost, public disapproval due to harmful products such as NO_x , SO_x , HCl. Non-combustible materials not treated.

1d) Tip: Products produced will mostly be as the name of stage suggests

Stage 1 Hydrolysis: Breakdown of complex biopolymers to products like sugar, amino acids, peptides

Stage 2 Acidogenesis: Volatile Fatty Acids (VFAs)

Stage 3 Acetogenesis: VFAs broken down by acetogens to produce H₂ + CO₂ + Acetate

Stage 4 Methanogenesis: Acetate breaks down into CO₂ and CH₄ (Methane gas is MAIN PRODUCT)

2a) Corrosive, Toxic, Ignitable, Reactive, Eco-toxicity (CTIRE)

2b) Hazard Identification \rightarrow Dose-response assessment \rightarrow Exposure assessment \rightarrow Risk characterisation

2c) Pollutant Standard Index (PSI) measures 6 air pollutants of

24-hr PM _{2.5}	24-hr PM ₁₀	24-hr SO₂	8-hr CO	8-hr O₃	1-hr NO ₂
210		-		0	-

PSI readings provide information on the level of each of these pollutants in the air

2d) Basel Convention is the global approach to control transboundary movement of hazardous waste.

Prevention and penalisation achieved through national and domestic legislation. Movement considered illegal without notification/constant consent of parties involved or if consent was faked.

3a) In 1 hour

Heat input = $(82\%+6\%) \times 1000$ kg/h $\times 17,000$ kJ/kg = 1.496×10^7 kJ Heat loss due to radiation = $0.04 \times 1.496 \times 10^7$ kJ/h = 5.984×10^5 kJ Heat used for evaporation of water = $12\% \times 1000$ kg/h $\times 2575$ kJ/kg = 3.09×10^5 kJ Actual heat produced by combustion = $92\% \times 1.496 \times 10^7$ kJ/h = 1.37632×10^7 kJ Heat left in ash = 0.04×1000 kg/h $\times 0.837$ kJ/kg/°C $\times 830$ °C = 2.77884×10^6 kJ Heat used to heat up air = $(1.37632 \times 10^7$ kJ) – $(3.09 \times 10^5$ kJ) – $(5.984 \times 10^5$ kJ) – $(2.77884 \times 10^6$ kJ) = 1.0077×10^7 kJ Temperature of stack gases = 1.0077×10^7 kJ $\div 9000$ kg $\div 1$ kJ/kg/°C = 1119.66 °C

3b(i) In 1 week, waste generated by family = $2kg/per person/day \times 4 people \times 7 days = <u>56kg</u>$ Capacity required = $56kg \div 200kg/m^3 = 0.28m^3 = 280L$ No. of 40L garbage cans = $280L \div 40L = 7$

3b(ii) No. of blocks = 56kg \div 20kg = 2.8 blocks Space taken up by blocks = 56kg \div 1400kg/m³ = 0.04m³ = 40L No. of 40L garbage cans = 40L \div 40L = 1

3c(i)

Calorific value =
$$\frac{1,144,820 \, kJ}{100 \, kg}$$

= 114,48.2 kJ/kg

3c(ii)

Total energy after segregation = $1,144,820 - (0.5 \times 569,500) - (0.8 \times 97680)$ = 781,926 kJ/kg

4b(i) Dioxins refer to a family of around 200 chlorinated organic compounds, few of which are highly toxic. During incineration, dioxins formation occur if temperatures fall below 870°C.

4b(ii) Note: W in g/min, 1m³ = 1000L

Dioxin	Furan		
$DRE = \frac{W_{in} - W_{out}}{W_{in}} X \ 100\%$	$DRE = \frac{W_{in} - W_{out}}{W_{in}} X \ 100\%$		
$W_{in} = 1.7L / \min \times \frac{2.05g}{mL}$ $W_{in} = 3485g / min$	$W_{in} = 1.3L/\min \times \frac{0.95g}{mL}$ $W_{in} = 1235g/min$		
$W_{out} = \frac{1000m^3}{min} \times 300\mu g/m^3$ $W_{out} = 0.3g/min$	$W_{out} = \frac{1000m^3}{min} \times 300\mu g/m^3$ $W_{out} = 0.3g/min$		
$DRE = \frac{3485 - 0.3}{3485} X \ 100\%$	$DRE = \frac{1235 - 0.3}{1235} X \ 100\%$		
DRE = 99.99%	DRE = 99.9757%		
Meets regulations	Do not meet regulations		

All the best 😔

Tay Yu Ting

4a)