1(a)(i)
$\frac{C_{i}-C_{e}}{C_{i}}=\%$ removal $=>\frac{C_{e}}{C_{i}}=1-\%$ removal $=>\log _{10}\left(\frac{C_{i}}{C_{e}}\right)=\log _{10}\left(\frac{1}{1-\% \text { removal }}\right)$
$\log _{10}\left(\frac{\mathrm{C}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{e}}}\right)=\mathrm{k} \times \mathrm{Ct}=>\mathrm{k}=\log _{10}\left(\frac{\mathrm{C}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{e}}}\right) / \mathrm{Ct}=\log _{10}\left(\frac{1}{1-\% \text { removal }}\right) / \mathrm{Ct}$
Disinfectant $A: k=\log _{10}\left(\frac{1}{1-0.99}\right) / 0.10=20$
Disinfectant $\mathrm{B}: \mathrm{k}=\log _{10}\left(\frac{1}{1-0.99}\right) / 0.15=13.33$
Disinfectant $\mathrm{C}: \mathrm{k}=\log _{10}\left(\frac{1}{1-0.9999}\right) / 0.15=26.67($ largest $=>$ choose C$)$
Disinfectant D: $\mathrm{k}=\log _{10}\left(\frac{1}{1-0.99999}\right) / 0.25=20$
1(a)(ii)
At high pH , HOCL dissociates to $\mathrm{OCl}^{-} . \mathrm{OCl}^{-}$is $20-100$ times less effective as disinfectant. Therefore, it is desirable for chlorination to have pH 7 or less to obtain more HOCl .

1(a)(iii)

At breakpoint: Chlorine dosage $=$ Chlorine demand + Chlorine residual $=0.3+0.5=0.8 \mathrm{mg} / \mathrm{L}$ At free chlorine of $0.5 \mathrm{mg} / \mathrm{L}$: Chlorine dosage $=0.8+0.5=1.3 \mathrm{mg} / \mathrm{L}$

1(b)
$\mathrm{MW}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=180 ; \mathrm{MW}_{\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}}=113 ; \mathrm{MW}_{\mathrm{C}_{6} \mathrm{H}_{6}}=78$
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+\mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
TON of wastewater $\mathrm{A}=\frac{14}{113} \times\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}\right]_{\mathrm{A}}$ in mg/L
TON of wastewater ${ }_{\text {mixed }}=10 \mathrm{mg} / \mathrm{L}=\frac{\frac{14}{113} \times\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}\right]_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{A}}}{\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}}=\frac{\frac{14}{113} \times\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}\right]_{\mathrm{A}} \times 200}{200+50}$
\therefore Concentration of $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}$ in wastewater $\mathrm{A}=\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}\right]_{\mathrm{A}}=100.89 \mathrm{mg} / \mathrm{L}$
$\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{\text {mixed }}=130 \mathrm{mg} / \mathrm{L}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{A}}+\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{\mathrm{B}} \times \mathrm{Q}_{\mathrm{B}}}{\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}}=\frac{150 \times 200+\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{\mathrm{B}} \times 50}{200+50}$
\therefore Concentration of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in wastewater $\mathrm{B}=\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{\mathrm{B}}=50 \mathrm{mg} / \mathrm{L}$

TOC of wastewater ${ }_{\text {mixed }}=112 \mathrm{mg} / \mathrm{L}=\frac{\left\{\left[\frac{72}{180}(150)+\frac{60}{113}(100.89)\right] \times 200+\left[\frac{72}{180}(50)+\frac{72}{78}\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]\right] \times 50\right\}}{200+50}$
\therefore Concentration of $\mathrm{C}_{6} \mathrm{H}_{6}$ in wastewater $\mathrm{B}=\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]_{\mathrm{B}}=92.86 \mathrm{mg} / \mathrm{L}$
$\mathrm{COD}_{\mathrm{A}}=\mathrm{COD}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\mathrm{COD}_{\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}}=\frac{192}{180}(150)+\frac{160}{113}(100.89)=302.853 \mathrm{mg} / \mathrm{L}$
\therefore Biological treatability of wastewater $A=\frac{\mathrm{BOD}_{\mathrm{A}}}{\mathrm{COD}_{\mathrm{A}}}=\frac{220}{302.853}=0.73$
$\operatorname{COD}_{\mathrm{B}}=\operatorname{COD}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\operatorname{COD}_{\mathrm{C}_{6} \mathrm{H}_{6}}=\frac{192}{180}(50)+\frac{240}{78}(92.86)=339.056 \mathrm{mg} / \mathrm{L}$
\therefore Biological treatability of wastewater $\mathrm{B}=\frac{\mathrm{BOD}_{\mathrm{B}}}{\mathrm{COD}_{\mathrm{B}}}=\frac{50}{339.056}=0.15$
For checking purpose only:
Biological treatability of mixed wastewater
$=\frac{\mathrm{BOD}_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{A}}+\mathrm{BOD}_{\mathrm{B}} \times \mathrm{Q}_{\mathrm{B}}}{\mathrm{COD}_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{A}}+\mathrm{COD}_{\mathrm{B}} \times \mathrm{Q}_{\mathrm{B}}}=\frac{220 \times 200+50 \times 50}{302.853 \times 200+339.056 \times 50}=0.6(0 \mathrm{~K}!)$
2(a)
Material A:
$\mathrm{d}_{\mathrm{B}}=\mathrm{d}_{\mathrm{A}}\left(\frac{\mathrm{S}_{\mathrm{A}}-1}{\mathrm{~S}_{\mathrm{B}}-1}\right)^{2 / 3}=2.5\left(\frac{1.5-1}{1.5-1}\right)^{2 / 3}=2.5 \mathrm{~mm}$ (not compatible!)
$\mathrm{d}_{\mathrm{C}}=\mathrm{d}_{\mathrm{A}}\left(\frac{\mathrm{S}_{\mathrm{A}}-1}{\mathrm{~S}_{\mathrm{C}}-1}\right)^{2 / 3}=2.5\left(\frac{1.5-1}{2.4-1}\right)^{2 / 3}=1.3 \mathrm{~mm}$ (not compatible!)
$\mathrm{d}_{\mathrm{D}}=\mathrm{d}_{\mathrm{A}}\left(\frac{\mathrm{S}_{\mathrm{A}}-1}{\mathrm{~S}_{\mathrm{D}}-1}\right)^{2 / 3}=2.5\left(\frac{1.5-1}{3.4-1}\right)^{2 / 3}=0.9 \mathrm{~mm}$ (not compatible!)
Material B:
$\mathrm{d}_{\mathrm{C}}=\mathrm{d}_{\mathrm{B}}\left(\frac{\mathrm{S}_{\mathrm{B}}-1}{\mathrm{~S}_{\mathrm{C}}-1}\right)^{2 / 3}=2.0\left(\frac{1.5-1}{2.4-1}\right)^{2 / 3}=1.0 \mathrm{~mm}$ (compatible! $=>\mathrm{B}$ at top, C at bottom)
$d_{D}=d_{B}\left(\frac{S_{B}-1}{S_{D}-1}\right)^{2 / 3}=2.0\left(\frac{1.5-1}{3.4-1}\right)^{2 / 3}=0.7 \mathrm{~mm}$ (compatible! $=>B$ at top, D at bottom $)$
Material C:
$\mathrm{d}_{\mathrm{D}}=\mathrm{d}_{\mathrm{C}}\left(\frac{\mathrm{S}_{\mathrm{C}}-1}{\mathrm{~S}_{\mathrm{D}}-1}\right)^{2 / 3}=1.0\left(\frac{2.4-1}{3.4-1}\right)^{2 / 3}=0.7 \mathrm{~mm}$ (compatible! $=>\mathrm{C}$ at top, D at bottom)
Material C and D have the same porosity => eliminate this option
2(b)(i)
Flow rate: $Q_{p}=Q_{f} \times Y_{A} \times Y_{B}=10 \times 0.1 \times 0.2=0.2 \mathrm{~L} / \mathrm{h}$
Arsenic concentration: $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{f}} \times\left(1-\mathrm{R}_{\mathrm{A}}\right) \times\left(1-\mathrm{R}_{\mathrm{B}}\right)=10 \times(1-0.2) \times(1-0.1)=7.2 \mathrm{mg} / \mathrm{L}$
2(b)(ii)
Advantages:

- Membrane filtration is effective for removing protozoa such as Cryptosporidium better than granular filtration which requires coagulation-flocculation step.
- Membrane filtration has high packing density which results in a smaller footprint.

Disadvantages:

- Membrane filtration is susceptible to pore blocking which is where the entrance to a pore is completely sealed by particle.
- Membrane filtration is susceptible to pore constriction which is the reduction of void volume due to adsorption of particles.

3(a)
(i) $\mathrm{TS}=\frac{\text { mass of evaporating dish plus residue }- \text { mass of evaporating dish }}{\text { sample size }}$
$=\frac{(53.5794-53.5433) \mathrm{g}(1000 \mathrm{mg} / \mathrm{g})}{0.05 \mathrm{~L}}$
$=722 \mathrm{mg} / \mathrm{L}$
(ii) TVS $=\frac{\text { mass of evaporating dish plus residue }- \text { mass of evaporating dish plus residue after ignition }}{\text { sample size }}$
$=\frac{(53.5794-53.5625) \mathrm{g}(1000 \mathrm{mg} / \mathrm{g})}{0.05 \mathrm{~L}}$
$=338 \mathrm{mg} / \mathrm{L}$
(iii) $\mathrm{TSS}=\frac{\text { residue on filter after drying }- \text { tare mass of filter after drying }}{\text { sample size }}$
$=\frac{(1.5554-1.5433) \mathrm{g}(1000 \mathrm{mg} / \mathrm{g})}{0.05 \mathrm{~L}}$
$=242 \mathrm{mg} / \mathrm{L}$
(iv) $\mathrm{VSS}=\frac{\text { residue on filter after drying }- \text { tare mass of filter after ignition }}{\text { sample size }}$
$=\frac{(1.5554-1.5476) \mathrm{g}(1000 \mathrm{mg} / \mathrm{g})}{0.05 \mathrm{~L}}$
$=156 \mathrm{mg} / \mathrm{L}$
(v) $\mathrm{TDS}=\mathrm{TS}-\mathrm{TSS}=722-242=480 \mathrm{mg} / \mathrm{L}$
(vi) $\mathrm{VDS}=\mathrm{TVS}-\mathrm{VSS}=338-156=182 \mathrm{mg} / \mathrm{L}$

3(b)

Without recycle:
Surface area: $A=\frac{Q}{V_{0}}=\frac{500 \mathrm{~m}^{3} / \mathrm{d} \times 1000 \mathrm{~L} / \mathrm{m}^{3}}{8 \mathrm{~L} / \mathrm{m}^{2} \cdot \min \times 1440 \mathrm{~min} / \mathrm{d}}=43.4 \mathrm{~m}^{2}$
$\frac{\mathrm{A}}{\mathrm{S}}=\frac{1.3 \cdot \mathrm{~s}_{\mathrm{a}}(\mathrm{fP}-1)}{\mathrm{S}_{\mathrm{a}}}=>0.008=\frac{1.3 \cdot 18.7(0.5 \mathrm{P}-1)}{4000}=>\mathrm{P}=4.633 \mathrm{~atm}$
Gauge pressure: $\mathrm{p}=101.35 \mathrm{P}-101.35=101.35(4.633)-101.35=368.17 \mathrm{kPa}$

With recycle:
Gauge pressure: $\mathrm{p}=300 \mathrm{kPa}$ (given)
$P=\frac{p+101.35}{101.35}=\frac{300+101.35}{101.35}=3.96 \mathrm{~atm}$
$\frac{\mathrm{A}}{\mathrm{S}}=\frac{1.3 \cdot \mathrm{~s}_{\mathrm{a}}(\mathrm{fP}-1) \mathrm{R}}{\mathrm{S}_{\mathrm{a}} \mathrm{Q}}=>0.008=\frac{1.3 \cdot 18.7(0.5 \times 3.96-1) \mathrm{R}}{4000 \times 500}=>\mathrm{R}=671.58 \mathrm{~m}^{3} / \mathrm{d}$
Surface area: $A=\frac{Q+R}{V_{0}}=\frac{(500+671.58) \mathrm{m}^{3} / \mathrm{d} \times 1000 \mathrm{~L} / \mathrm{m}^{3}}{8 \mathrm{~L} / \mathrm{m}^{2} \cdot \min \times 1440 \mathrm{~min} / \mathrm{d}}=101.7 \mathrm{~m}^{2}$

3(c)(i)
$\mathrm{X}=\mathrm{MLVSS}=0.85 \mathrm{MLSS}=0.85(3000)=2550 \mathrm{mg} / \mathrm{L}$
$\frac{\mathrm{F}}{\mathrm{M}}=\frac{\mathrm{QS}_{0}}{\mathrm{VX}}=\frac{10000 \mathrm{~m}^{3} / \mathrm{d} \times 200 \mathrm{mg} / \mathrm{L}}{3000 \mathrm{~m}^{3} \times 2550 \mathrm{mg} / \mathrm{L}}=0.26 \mathrm{~kg} \mathrm{BOD} / \mathrm{kg} \mathrm{VSS} \cdot \mathrm{d}$

3(c)(ii)
$\theta=\frac{V}{Q}=\frac{3000 \mathrm{~m}^{3}}{10000 \mathrm{~m}^{3} / \mathrm{d}}=0.3 \mathrm{~d}=7.2 \mathrm{hrs}$
3(c)(iii)
Removal efficiency for BOD $=\frac{200-25}{25} \times 100 \%=87.5 \%$
Removal efficiency for $\mathrm{SS}=\frac{100-30}{100} \times 100 \%=70 \%$
4(a)
Effluent $\mathrm{BOD}_{5}=15 \mathrm{mg} / \mathrm{L}=\left(1-\frac{\mathrm{E}_{1}}{100}\right)\left(1-\frac{\mathrm{E}_{2}}{100}\right)$ (200)
Given that $\mathrm{E}_{1}=\mathrm{E}_{2}=>\therefore \mathrm{E}_{1}=\mathrm{E}_{2}=73 \%$
$\mathrm{W}_{1}=\mathrm{QS}_{0}=3785 \mathrm{~m}^{3} / \mathrm{d} \times 200 \mathrm{mg} / \mathrm{L} \times 10^{3} \mathrm{~L} / \mathrm{m}^{3} \times 10^{-6} \mathrm{~kg} / \mathrm{mg}=757 \mathrm{~kg} / \mathrm{d}$
$\mathrm{F}=\frac{1+\mathrm{R}}{(1+\mathrm{R} / 10)^{2}}=\frac{1+1.8}{(1+1.8 / 10)^{2}}=2.01$
$\mathrm{E}_{1}=\frac{100}{1+0.4432 \sqrt{\frac{W_{1}}{\mathrm{~V}_{1} F}}}=\frac{100}{1+0.4432 \sqrt{\frac{757}{\mathrm{~V}_{1} \times 2.01}}}=73$
$\therefore \mathrm{V}_{1}=540.8 \mathrm{~m}^{3}$
$\therefore \mathrm{A}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{~h}}=\frac{540.8}{2}=270.4 \mathrm{~m}^{2}$
$\therefore \frac{\pi d_{1}^{2}}{4}=A_{1}=270.4=>d_{1}=18.6 \mathrm{~m}$
$W_{2}=W_{1}\left(1-\frac{E_{2}}{100}\right)=757\left(1-\frac{73}{100}\right)=204.39 \mathrm{~kg} / \mathrm{d}$
$\mathrm{E}_{2}=\frac{100}{1+\frac{0.4432}{1-\mathrm{E}_{1}} \sqrt{\frac{\mathrm{~W}_{2}}{\mathrm{~V}_{2} \mathrm{~F}}}}=\frac{100}{1+\frac{0.4432}{1-0.73} \sqrt{\frac{204.39}{\mathrm{~V}_{2} \times 2.01}}}=73$
$\therefore \mathrm{V}_{2}=2002.9 \mathrm{~m}^{3}$
$\therefore \mathrm{A}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{~h}}=\frac{2002.9}{2}=1001.4 \mathrm{~m}^{2}$
$\therefore \frac{\pi d_{2}^{2}}{4}=A_{2}=1001.4=>\mathrm{d}_{2}=35.7 \mathrm{~m}$

4(b)
$\mathrm{S}_{\mathrm{s}}=\frac{\mathrm{M}_{\mathrm{s}}}{\frac{\mathrm{M}_{\mathrm{v}}}{\mathrm{S}_{\mathrm{v}}}+\frac{\mathrm{M}_{\mathrm{f}}}{\mathrm{S}_{\mathrm{f}}}}=\frac{\mathrm{M}_{\mathrm{s}}}{\frac{0.8 \mathrm{M}_{\mathrm{s}}}{1.01}+\frac{0.2 \mathrm{M}_{\mathrm{s}}}{1.95}}=1.118$
Sludge with 99% water content: $\mathrm{S}_{\mathrm{sl}, 1}=\frac{\mathrm{M}_{\mathrm{sl}}}{\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{s}}}+\frac{\mathrm{M}_{\mathrm{w}}}{S_{\mathrm{w}}}}=\frac{\mathrm{M}_{\mathrm{sl}}}{\frac{0.01 \mathrm{M}_{\mathrm{sl}}}{1.118}+\frac{0.99 \mathrm{M}_{\mathrm{sl}}}{1}}=1.001$
Sludge with 96% water content: $S_{s l, 2}=\frac{M_{s l}}{\frac{M_{s}}{S_{s}}+\frac{M_{w}}{S_{w}}}=\frac{M_{s l}}{\frac{0.04 M_{s l}}{1.118}+\frac{0.96 M_{s l}}{1}}=1.004$
$\frac{\mathrm{V}_{\mathrm{sl}, 2}}{\mathrm{~V}_{\mathrm{sl}, 1}}=\frac{\mathrm{S}_{\mathrm{sl}, 1} \mathrm{P}_{\mathrm{s}, 1}}{\mathrm{~S}_{\mathrm{sl}, 2} \mathrm{P}_{\mathrm{s}, 2}}=\frac{1.001 \times 0.01}{1.004 \times 0.04}=0.25=25 \%(75 \%$ reduction in volume $)$

4(c)(i)
Volume of sludge per day, $\mathrm{V}_{\mathrm{sl}}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{sl}} \rho_{\mathrm{w}} \mathrm{P}_{\mathrm{s}}}=\frac{3500 \mathrm{~m}^{3} / \mathrm{d} \times 0.12 \mathrm{~kg} / \mathrm{m}^{3}}{1.01 \times 1000 \mathrm{~kg} / \mathrm{m}^{3} \times 0.05}=8.32 \mathrm{~m}^{3} / \mathrm{d}$
Volume of anaerobic digester, $\mathrm{V}=8.32 \mathrm{~m}^{3} / \mathrm{d} \times 15 \mathrm{~d}=124.8 \mathrm{~m}^{3}$
4(c)(ii)
$\mathrm{VLR}=\frac{\mathrm{QS}_{0}}{\mathrm{~V}}=\frac{3500 \mathrm{~m}^{3} / \mathrm{d} \times 0.15 \mathrm{~kg} / \mathrm{m}^{3}}{124.8 \mathrm{~m}^{3}}=4.21 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{~d}$

Done by
Foo Tun How Nicholas

