NTU 16/17 Semester 2 CV2011 Final Exam Solution

1.(a)

The resultant force on top of beam = The resultant force at below of beam
$\frac{1}{2}(4.5)(2+3.5)=\frac{1}{2}(3.5)\left(w_{1}+w_{2}\right)$
$\mathrm{w}_{2}+\mathrm{w}_{1}=7.0714-----(1)$

At point A,
The moment due to the force on top of beam = The moment due to the force below of beam
Devide the force distribution on top into 3 parts, the force distribution below into 2 parts, then
$F_{1}\left(\frac{2}{3}\right)+F_{2}(2)+F_{3}\left(3 \frac{1}{6}\right)=F_{4}(1.75)+F_{5}\left(\frac{7}{3}\right)$
where
$\mathrm{F}_{1}=\frac{1}{2}(4.5)(1)=2.25 \mathrm{kN}$
$\mathrm{F}_{2}=(4.5)(2)=9 \mathrm{kN}$
$\mathrm{F}_{3}=\frac{1}{2}(4.5)(0.5)=1.125 \mathrm{kN}$
$\mathrm{F}_{4}=\left(\mathrm{w}_{1}\right)(3.5)=3.5 \mathrm{w}_{1} \mathrm{kN}$
$\mathrm{F}_{5}=\frac{1}{2}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)(3.5)=1.75\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right) \mathrm{kN}$

$==》 2 w_{2}+w_{1}=11.2960-$

By solving equation (1) and (2),
$\mathrm{w}_{2}=4.22 \mathrm{kN} / \mathrm{m}, \mathrm{w}_{1}=2.85 \mathrm{kN} / \mathrm{m}$
1.(b) First, remove all the obvious zero force
members, identify support reactions

Support Reaction:
Take moment about point A, We get $\mathrm{F}_{\mathrm{I}}=6.375 \mathrm{kN}$
$\Sigma F_{y}=0$, we get $F_{A y}=5.625 \mathrm{kN}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$, we get $\mathrm{F}_{\mathrm{Ax}}=0$

Take moment about point M,
$-5.625(4)+\mathrm{F}_{\mathrm{CD}}(4)=0$

$\mathrm{F}_{\mathrm{CD}}=5.625 \mathrm{kN}$ (Tension)

Consider point C ,

$2 k N$
$\Sigma \mathrm{F}_{\mathrm{y}}=0$, we get $\mathrm{F}_{\mathrm{MC}}=\mathbf{2 k N}$ (Tension)

2(a)

Moment of big square- moment of small rectangle $=$ moment of U shape
$(160)(160)(80)-(120)(80)(100)=x(160 * 160-$ 120*80)
$\underline{X}=68 \mathrm{~mm}$
Moment of inertia about y'-axis
$=$ Moment of intertia of big square about y^{\prime}-axis Moment of intertia of small rectangle about y'-axis
$=\left[\frac{1}{12}(160)(160)^{3}+(160)^{2}(80-68)^{2}\right]-$ $\left[\frac{1}{12}(80)(120)^{3}+(80)(120)(100-68)^{2}\right]$ $=36.9 \times 10^{8}\left(\mathrm{~mm}^{4}\right)$

2(b)

Take moment about point A,
$\mathrm{F}_{\mathrm{BE}}(300)+\mathrm{F}_{\mathrm{FC}}(600)-1(900)=0$
$F_{B E}+2 F_{F C}=3----(1)$

Due to property of similar triangle,
$\frac{\delta_{\mathrm{BE}}}{\delta_{\mathrm{CF}}}=\frac{300}{300+300}$
$\frac{\frac{\mathrm{P}_{1} \mathrm{~L}_{1}}{\mathrm{E}_{1} \mathrm{~A}_{1}}}{\frac{\mathrm{P}_{2} \mathrm{~L}_{2}}{\mathrm{E}_{2} \mathrm{~A}_{2}}}=\frac{1}{2}$
Take note that $\mathrm{E}_{1}=\mathrm{E}_{2}, \mathrm{~A}_{1}=\mathrm{A}_{2}$
$2 \mathrm{~F}_{\mathrm{BE}}(250)=\mathrm{F}_{\mathrm{FC}}(450)$
$\mathrm{F}_{\mathrm{BE}}-0.9 \mathrm{~F}_{\mathrm{FC}}=0----(2)$
Solve equation (1) and (2),
We will get $\mathbf{F}_{\mathrm{BE}}=\frac{27}{29} \mathbf{k N}, \mathrm{~F}_{\mathrm{FC}}=\frac{30}{29} \mathbf{k N}$
$\delta_{B}=\frac{P_{1} L_{1}}{\mathrm{E}_{1} \mathrm{~A}_{1}}$
$\delta_{\mathrm{B}}=\frac{\frac{27}{29} \times 250}{200 \mathrm{G} \times \pi \times\left(\frac{0.0015}{2}\right)^{2}}$
$=0.6585 \mathrm{~mm}$
Due to properties of similar triangle,
$\delta_{D}=3 \delta_{B}=1.976 \mathrm{~mm}$

3(a)

$\mathrm{wl} / 2$
$\mathrm{wl} / 2$
(By symmetry)
Shear Diagram of Bar CD

Bending Moment Diagram of Bar CD
M(kNm)

Remarks: After drawing the shear diagram, you should be able to tell how does the shape of Bending Moment Diagram look like, it is a very basic pattern. Q: How we know $\mathrm{wl}^{2} / 8$ is the largest bending moment? A: Find the area from 0 to $l / 2$ in Shear Diagram. Since this area is above x-axis, it means increment of Bending Moment

Provided by Mr. Chan Yuan Jie ychan025@e.ntu.edu.sg

Continue 3 (a)
FBD of Bar AB

Too fast? Don't worry, follow the steps:

1. Determine the length accordingly, assume symmetry, else will be too troublesome=:=
Though I think this should be stated at the beginning of question rather
than part (b)...
2. Copy the green arrow from Bar CD based on

Newton Third Law.
3. Find the value of red arrow (Distributed loading)
by length*loading per length
4. Use $\Sigma F_{y}=0$, to find support reaction (blue arrow)
Shear Diagram of Bar AB

Bending Moment Diagram of Bar AB

Q: How to get $\frac{w}{2}\left(9-\frac{1^{2}}{4}\right)$?
A: Area from Shear Diagram.
**Try to master the "lazy" method to draw shear and bending moment diagram. It helps a lot in exam since you need to write significantly less.

3(b)
When l $=3 \mathrm{~m}$,
Shear Max of Bar CD $=1.5 \mathrm{w}$
Shear Max of Bar AB $=3 \mathrm{w}$
(larger)

Cross section properties:
$\mathrm{Q}=\frac{1}{2} \pi\left(50^{2}\right)\left(\frac{4(50)}{3 \pi}\right)-\frac{1}{2} \pi\left(30^{2}\right)\left(\frac{4(30)}{3 \pi}\right)$
Q = $65333.33\left(\mathrm{~mm}^{3}\right)$
$I=\frac{1}{4} \pi\left(50^{4}-30^{4}\right)$
$\mathrm{I}=4.2725 \times 10^{6}\left(\mathrm{~mm}^{4}\right)$
$\mathrm{t}=100-60$
$\mathrm{t}=\mathbf{4 0}(\mathrm{mm})$
max allow transverse shear stress $\boldsymbol{\tau}=\mathbf{8 0} \mathbf{~ M P a}$
Use formula
$\tau=\frac{\mathrm{VQ}}{\mathrm{It}}$
we will get $w_{\max }=69.76 \mathrm{kN} / \mathrm{m}$
When l $=3 \mathrm{~m}$,
B. Moment Max of Bar CD $=9 \mathrm{w} / 8$
B. Moment Max of Bar AB $=27 \mathrm{w} / 8 \leftarrow$ Choose this (larger)

Given max allow bending stress $\boldsymbol{\sigma}=\mathbf{1 4 0} \mathbf{M p a}$
Use Formula
$\sigma=\frac{\mathrm{My}}{\mathrm{I}}$
where $\mathbf{y}=\mathbf{5 0} \mathbf{m m}$
we will get $\mathrm{w}_{\max }=3.54 \mathrm{kN} / \mathrm{m}$
Compare the two $\mathrm{w}_{\text {max }}$ we get, it is obvious that structure will fail when $\mathrm{w}>3.54 \mathrm{kN} / \mathrm{m}$.

Therefore, largest permessible $\mathbf{w}=3.54 \mathrm{kN} / \mathrm{m}$.

Provided by Mr. Chan Yuan Jie ychan025@e.ntu.edu.sg

3(b)

Let φ_{1} be the angle of thrist of first case, φ_{2} be the angle of thrist of second case

Given $\mathrm{A}_{1}=\mathrm{A}_{2}$
$\pi\left[(2 \mathrm{R})^{2}-\mathrm{R}^{2}\right]=\pi \mathrm{r}_{2}{ }^{2}$
$r_{2}=\sqrt{3} R$
Using Formula

$$
\varphi=\frac{\mathrm{TL}}{\mathrm{JG}}
$$

Take note that T, L, G are same for both cases, Therefore,
$\frac{\varphi_{1}}{\varphi_{2}}=\frac{\mathrm{J}_{2}}{\mathrm{~J}_{1}}$
$\frac{3^{o}}{\varphi_{2}}=\frac{\frac{\pi}{2}(\sqrt{3} R)^{4}}{\frac{\pi}{2}\left[(2 R)^{4}-R^{4}\right]}$
Simplify, we get $\varphi_{2}=5^{\circ}$

Given
At b-b surface, horizontal, based on force
Given
At b-b surface, horizontal, based on force equilirbrium
$\sigma_{\mathrm{x}}=0, \sigma_{\mathrm{y}}=\frac{\mathrm{P}}{\mathrm{A}}, \quad \tau=0 \quad$ Take note $\mathrm{A}=3600 \mathrm{~mm}^{2}$
$\sigma_{\mathrm{ave}}=\frac{\frac{\mathrm{P}}{\mathrm{A}}+0}{2}=\frac{\mathrm{P}}{2 \mathrm{~A}}$
$\tau(\mathrm{MPa})$

Q: How to find coordinate correspond to a-a surface?
A: Use the trigo-ratio in the right triangle.
Cross section area $=3600\left(\mathrm{~mm}^{2}\right)$
Let $\frac{3 \mathrm{P}}{4 \mathrm{~A}}=800$, we will get $\mathrm{P}_{\max }=3840 \mathrm{kN}$
Let $\frac{P \sqrt{3}}{4 \mathrm{~A}}=600$, we will get $\mathrm{P}_{\max }=4988 \mathrm{kN}$

Therefore, the largest load that can applied is 3840kN.

Cross section propersites:
$\mathrm{A}=\pi(0.01)^{2}$
$\mathrm{A}=3.141 \times 10^{-4} \mathrm{~m}^{2}$
$\mathrm{Q}=\frac{2}{3}(0.01)^{3}$
$\mathrm{Q}=6.667 \times 10^{-7} \mathrm{~m}^{3}$
$\mathrm{I}=\frac{\pi}{4}(0.01)^{4}$
$\mathrm{I}=7.85 \times 10^{-9} \mathrm{~m}^{4}$
$\mathrm{J}=2 \mathrm{I}=1.57 \times 10^{-8} \mathrm{~m}^{4}$
$y=\rho=0.01 \mathrm{~m}$
$\mathrm{t}=0.02 \mathrm{~m}$

At point H ,
Normal stress $\sigma=\frac{F}{A}+\frac{M_{x y}}{I}$
Normal stress $\sigma=66.85 \mathrm{MPa}$
Shear stress
$\tau=\frac{\mathrm{T} \rho}{\mathrm{J}}$
$\tau=6.37 \mathrm{MPa}$
At point K,
Normal stress $\sigma=\frac{\mathrm{F}}{\mathrm{A}}$
Normal stress $\sigma=3.18 \mathrm{MPa}$
Shear stress
$\tau=\frac{\mathrm{T} \rho}{\mathrm{J}}+\frac{\mathrm{VQ}}{\mathrm{It}}$
$\tau=10.61 \mathrm{MPa}$
Use these formulas to find the answer required,
$\tau_{\max }=\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}}$
$\sigma_{1,2}=\sigma_{\text {ave }} \pm \tau_{\text {max }}$
At point H ,
$\sigma_{\mathrm{x}}=66.85 \mathrm{Mpa}, \sigma_{\mathrm{y}}=0, \tau_{\mathrm{x}, \mathrm{y}}=6.37 \mathrm{MPa}$
$\tau_{\text {max }}=34.04 \mathrm{MPa}$
$\sigma_{1}=67.45 \mathrm{MPa}$ (Tension)
$\sigma_{2}=-0.615 \mathrm{MPa}$ (Compression)
At point K,
$\sigma_{x}=3.18 \mathrm{Mpa}, \sigma_{y}=0, \tau_{x, y}=10.61 \mathrm{MPa}$
$\tau_{\text {max }}=10.73 \mathrm{MPa}$
$\sigma_{1}=12.32 \mathrm{MPa}$ (Tension)
$\sigma_{2}=-9.14 \mathrm{MPa}$ (Compression)

