NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2019-2020

CV3012 - STEEL DESIGN

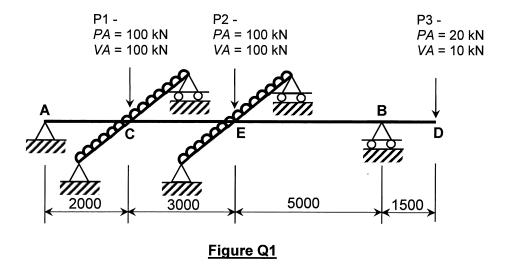
November / December 2019

Time Allowed: 2½ hours

INSTRUCTIONS

- 1. This paper contains FOUR (4) questions and comprises SEVEN (7) pages.
- 2. Answer ALL FOUR (4) questions.
- 3. All questions carry equal marks.
- 4. This paper is an Open Book Examination.
- 1. Figure Q1 shows a two-span continuous beam carrying three (3) concentrated actions. The characteristic values of permanent actions *PA* and variable actions *VA* are indicated in Figure Q1. A standard hot-rolled section UB 610 x 305 x 149 kg/m in Grade S275 steel is used to form the beam. Member AB is 10 m long, and Member BD is 1.5 m long. The lateral restraints are provided at the pinned supports A and B, and pinned connections at C and E only.

Determine the adequacy of Member EB in terms of the resistance against lateral torsional buckling by using the primary method (general case).


The following equation and its value for this beam are provided for your reference.

$$\frac{\pi^2 E I_z}{L_{cr}^2} \sqrt{\frac{I_w}{I_z} + \frac{L_{cr}^2 G I_T}{\pi^2 E I_z}} = 2545 \text{ kNm}, \text{ for } L_{cr} = 5.0 \text{ m}$$

You may ignore the self-weight of the beam. State clearly your other design assumptions, if any.

(25 Marks)

Note: Question No. 1 continues on page 2

(All dimensions are in mm unless otherwise stated)

2. Figure Q2 shows an internal column in a braced multi-storey building of simple connection. A standard hot-rolled section UC 356 x 368 x 202 kg/m in Grade S275 is used to form the column. One end of the column is a pinned connection and the other end of the column is a fixed connection, with an inter-storey floor-to-floor height of 10 m.

The design axial compression force N_{Ed} acting to the column is 4800 kN.

Determine the adequacy of this column if a cross beam, which provides restraint against buckling about the minor axis (z-z) only, is connected via a pinned connection to the beam web at mid-height as shown in Figure Q2.

Self-weight of the column may be neglected. State clearly your other design assumptions, if any.

(25 Marks)

Note: Question No. 2 continues on page 3

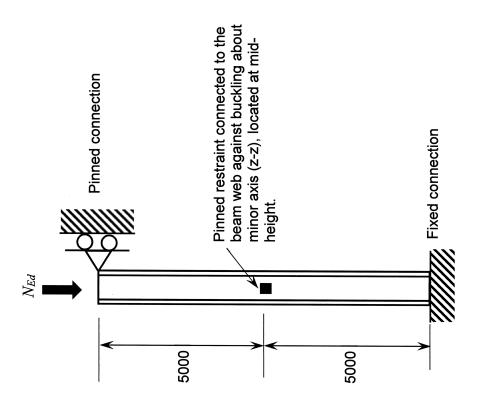
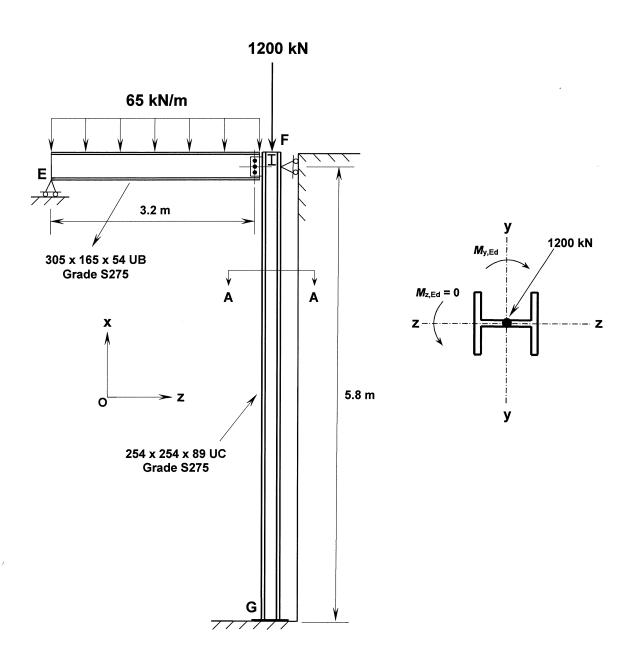


Figure Q2

(All dimensions are in mm unless otherwise stated)

- 3. A column FG shown in Figure Q3(a) supports a simply supported beam EF where a finplate connection is used at point F. While Figure Q3(b) shows the sectional view A-A of the column orientation. The base at point G is a fixed end connection. All the actions shown in the figure have been factored; the self-weight of the beam and column may be neglected in the design calculations.
 - (a) Calculate the total compression action and nominal moment at F about the y-y axis which need to be carried by the 254 x 254 x 89 UC column.

(5 Marks)


(b) Check the buckling and lateral torsional buckling resistance of this 254 x 254 x 89 UC column. Use the appropriate column effective length in your calculations.

(12 Marks)

(c) If the base of the column at point G is replaced by a pinned connection, will the column still be adequate to carry the design actions?

(8 Marks)

Note: Question No. 3 continues on page 5

Elevation

Section A-A

Figure Q3(a)

Figure Q3(b)

(Note: drawings are not drawn to scale)

- 4. Figure Q4 shows a bracket constructed from a cut 200 x 150 x 12 L unequal angle section. A total of 6 numbers of M16 Class 8.8 non-preloaded bolts in Grade S275 steel is used to connect the bracket to the flange of a 152 x 152 x 37 UC column. The bracket is subjected to a design action of 160 kN acting at an eccentricity of 90 mm from the face of the column.
 - (a) Assuming the centre of rotation is at point A, and the loads vary linearly, show that the proposed 6-bolt group is adequate under combined shear and tension action.

(15 Marks)

(b) If the bolts are replaced with an equal number of M16 Class 8.8 preloaded bolts in S275 designed to be non-slip in service, and assuming the slip factor μ = 0.5 and there is no prying force, determine the adequacy of these preloaded bolts.

(7 Marks)

(c) What are the advantages of using preloaded bolts in this type of connection?

(3 Marks)

Note: Question No. 4 continues on page 7

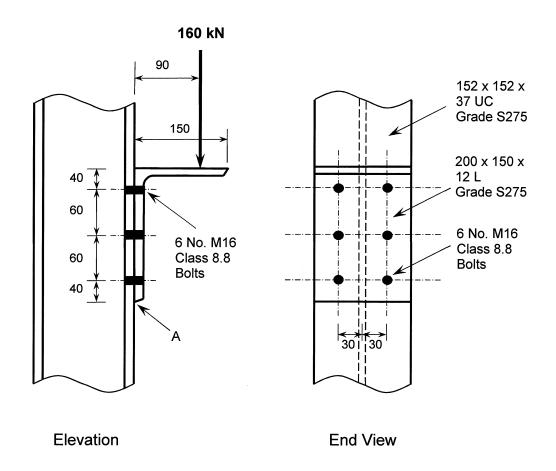
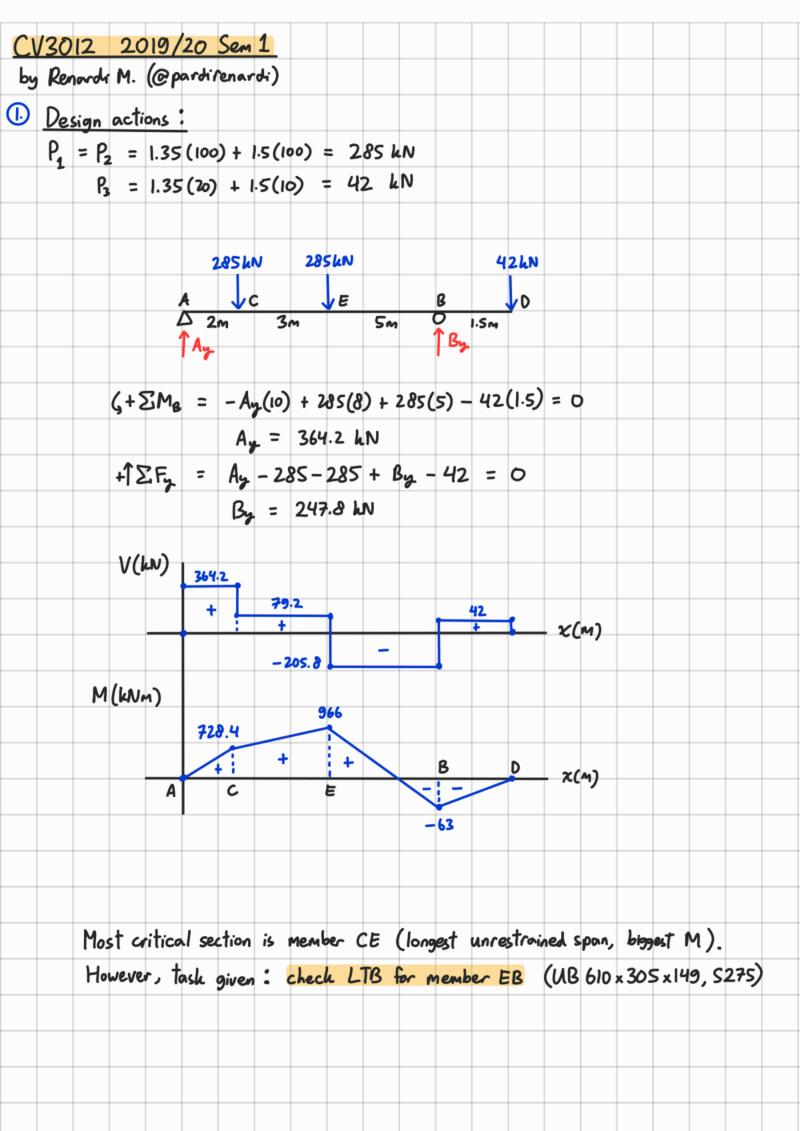
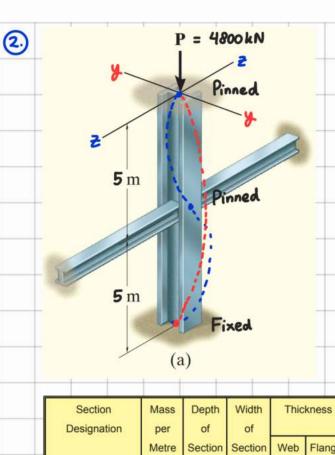


Figure Q4

(Note: drawings are not drawn to scale)


(All dimensions are in mm unless otherwise stated)

END OF PAPER


CV3012 STEEL DESIGN

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.

Section	Mass Depth	Width Thick	ness Root	Depth	Ratios for	Dimens	sions for	Surface Area	
Designation	per of	of	Radius	between Lo	ocal Buckling	Deta	ailing		
	Metre Section	Section Web	Flange	Fillets Fla	ange Web	End Clearance	Notch	Per Per Metre Tonne	
	h	b t _w	t _f r	d c	c_f/t_f c_w/t_w	С	N n	2 2	
610x305x149	kg/m mm 149.2 612.4	mm mm 304.8 11.8	mm mm 19.7 16.5	mm 540.0 6	.60 45.8	mm 8	mm mm 158 38	m ² m ² 2.39 16.0	
			10.0					10.0	
Section	Second Moment		Elastic Modulus	Plastic	Buckling Parameter		, ,	sional Area	
Designation	of Area Axis Axis	of Gyration Axis Axis		Modulus Axis Axis	rarameter	Index Co	onstant Cor	nstant of Section	
	y-y z-z	y-y z-z	y-y z-z	y-y z-z		V			
	cm ⁴ cm ⁴	cm cm	cm ³ cm ³	cm ³ cm ³	U	×		I_T A cm^4 cm^2	
610x305x149	126000 9310	25.7 7.00	-	4590 937	0.886	32.7	8.17 2	200 190	
LEB =	5.0m (Lateral re	estraints	at E	& B)				
					-				
w -	-63	0.065	2						
7 -	<u>-63</u> =	_ 0.003							
C, =	1.75 - 1.	05 (-0.0	0652) + 0	.3 (-0.0	652) ²	= 1.82	20 4	2.3	
M -	1.820 ×	2545	- 4631	9 4NN	,				
Icr -	1.020	(given)	- 1001						
_	4590 × 4631.9	275		,,		1.50	ماء	al	1-1
$\lambda_{LT} =$	11121 9	103	= 0.52	22 >	0.2	, LIE	s Che	cu need	iea
	•								
$\frac{h}{b} = \frac{6}{3}$	12 4				\bigcirc	N -	- 03	u	
<u> </u>	= 2	01 > 2	, rolled	7	6) 7	WLT .	_ 0.5	7	
6 3	04.8								
φ _{LT} =	[- 02)	1 0 50	27_	0 40	,		
Ψ _{LT} =	0.5 [1 +	0.34 (0.52	2 - 0.2)	+ 0.52	2] =	0.69	(
		1			07/ 1				
$\chi_{LT} =$		2	-	- = (0.874	<	1.0		
χ _{L7} =	0.691 +	0.691 ~ -	0.522						
		4	1590 × 2	75	3 .				
Mb,Rd	= 0.8	74 × -	10	— ×	10 - h	(Nm			
المرازق									
	= 1102	2 4 N/m	> M	E4 4	= 966	6 KNm		ou!	
	- 1105	_ K1017		50,7		1			
. Mari	er EB is c	dequeta	to reviet	ITR					
00 I RM	V 60 D	and have	10 19315 [J. D.					

UC 356 x 368 x 202 S275

Need to check for both z-z and y-y axis:

- z-z is the weaker axis but has a Shorter buckling length ($L_{cr} = 1.0 \times 5 \text{ m}$)
- o y-y is the Stronger axis but has a longer buchling length (Lcr = 0.85 x 10 m)

Hence no conclusion which axis is more critical (yet).

Section	Mass	Depth	Width	Thic	kness	Root	Depth	Ratio	os for	Dimen	sions fo	or	Surfac	e Area
Designation	per	of	of			Radius	between	Local E	Buckling	Det	ailing			
	Metre	Section	Section	Web	Flange		Fillets	Flange	Web	End	No	tch	Per	Per
										Clearance			Metre	Tonne
		h	b	t _w	t _f	r	d	c _f /t _f	c _w /t _w	С	Ν	n		
	kg/m	mm	mm	mm	mm	mm	mm		0.0	mm	mm	mm	m ²	m ²
356x368x202	201.9	374.6	374.7	16.5	27.0	15.2	290.2	6.07	17.6	10	190	44	2.19	10.8

-	Section	Second N	Moment	Ra	dius	Ela	stic	Pla	stic	Buckling	Torsional	Warping	Torsional	Area
	Designation	of A	rea	of Gy	ration	Mod	ulus	Mod	lulus	Parameter	Index	Constant	Constant	of
-		Axis	Axis	Axis	Axis	Axis	Axis	Axis	Axis					Section
		у-у	z-z	у-у	z-z	у-у	z-z	у-у	z-z					
1										U	X	l _w	I _T	Α
		cm ⁴	cm ⁴	cm	cm	cm ³	cm ³	cm ³	cm ³			dm ⁶	cm ⁴	cm ²
	356x368x202	66300	23700	16.1	9.60	3540	1260	3970	1920	0.844	13.35	7.16	558	257

Chech 2-2 buchling:

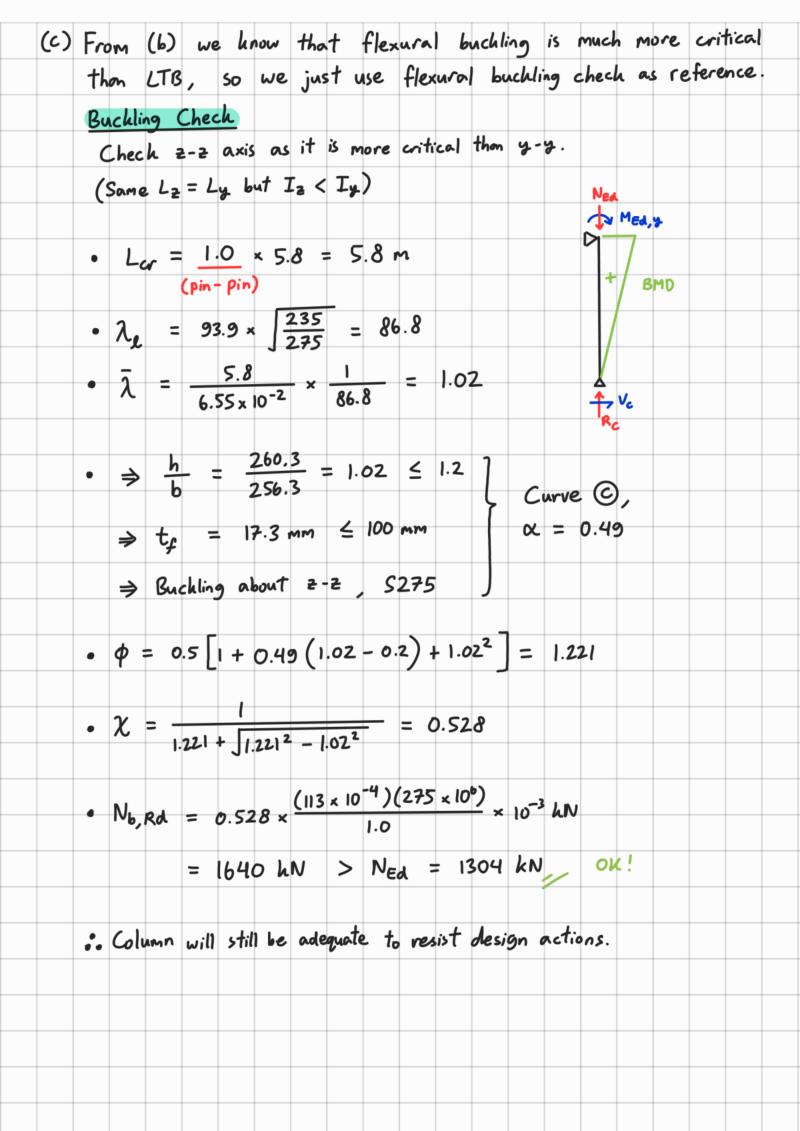
(Checking the top half (pin-pin) as it is more critical than the bottom half (fixed - pin))

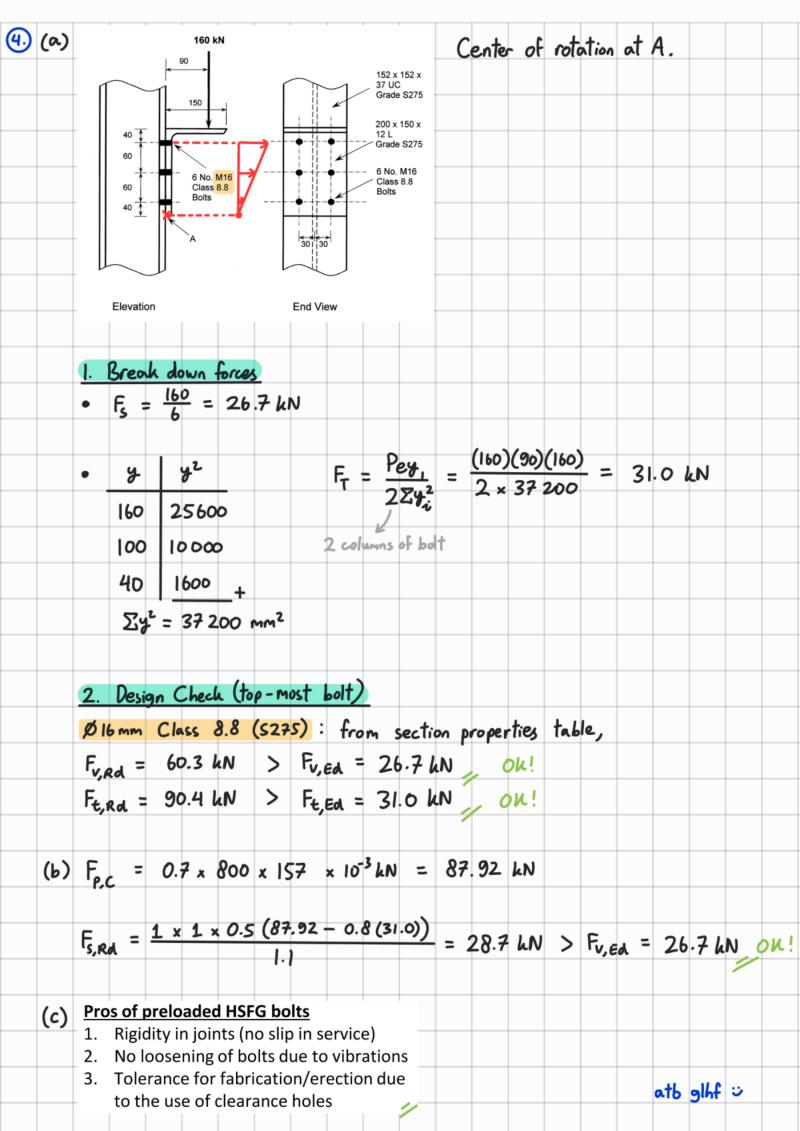
•
$$\lambda_{\ell} = 93.9 \times \sqrt{\frac{235}{275}} = 86.8$$

•
$$\overline{\lambda}_{\frac{3}{2}} = \frac{5}{9.60 \times 10^{-2}} \times \frac{1}{86.8} = 0.6 > 0.2$$
; need check buckling

•
$$\Rightarrow \frac{h}{b} = \frac{374.6}{374.7} = 1.00 \le 1.2$$

> tf = 27.0 mm ≤ 100 mm


Curve ©,


•
$$\phi = 0.5 \left[1 + 0.49 \left(0.60 - 0.2\right) + 0.60^{2}\right] = 0.778$$
• $\chi = \frac{1}{0.778 + \sqrt{0.778^{2} - 0.60^{2}}} = 0.785$
• $\chi = \frac{1}{0.778 + \sqrt{0.778^{2} - 0.60^{2}}} = 0.785$
• $\chi = \frac{1}{0.778 + \sqrt{0.778^{2} - 0.60^{2}}} = 0.785$
• $\chi = 0.785 \times \frac{(257 \times 10^{-4})(275 \times 10^{5})}{1.0} \times 10^{-3} \text{ kN}$
= $5548 \text{ kN} \times N_{Ed} = 4800 \text{ kN}$
• $\chi = 93.9 \times \frac{235}{2.75} = 86.8$
• $\chi = \frac{8.5}{16.1 \times 10^{-2}} \times \frac{1}{86.8} = 0.608 > 0.2$; need check buckling
• $\chi = \frac{1}{0.794 + \sqrt{0.794}} = \frac{3.74.6}{3.74.7} = 1.00 = 1.2$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$
• $\chi = \frac{1}{0.754 + \sqrt{0.794^{2} - 0.608^{2}}} = 0.833$

	Reacti																		
	· ME	1 1/2 =	F	۲ _{۴ ×}	ey	= 1	04	× (1	00 +	26	2	-)	x 10	-3 hA	m	=	23.9	4 hNm	1
		.,,			Ļ						4								
	• ME	1,2 =	- 0	h	Nm														
	fy =	275	N/	mm ²															
	Section		ass	Depth	Width	Thic	kness	Root	Dep	oth	Ratio	os for	Dim	ensions fo	or	Surfa	ce Area		
	Designat		etre	of Section	of Section	Web	Flange	Radius	betw	. I		Buckling	End	Detailing Not	ch	Per	Per		
					10			125				70-5-25	Clearan		20	Metre	Tonne		
			g/m	h mm	b mm	t _w mm	t _r mm	r mm	d mr	n		c _w /t _w	C	N mm	n mm	m²	m ²		
	254x254x8 254x254x7		8.9 3.1	260.3 254.1	256.3 254.6	10.3 8.6	17.3 14.2	12.7 12.7	200		6.38 7.77	19.4 23.3	7 6	134 134	30 28	1.50 1.49	16.9 20.4		
	0			Marrie		elli ve		vatic	Pi	atic	-	aldie v	Torrieral	Mercin	-	Jane 1	Arres		
	Section Designati	on	of A	Moment	of Gy	dius ration	2,5100	dulus	Plas		5,000,00	ckling imeter	Torsional Index	Warping Constant	MAGGINA	sional estant	Area of		
			Axis y-y	Axis z-z	Axis y-y	Axis z-z	Axis y-y	Axis z-z	Axis y-y	Axis z-z							Section		
			cm ⁴	cm ⁴	cm	cm	cm ³	cm ³	cm ³	cm ³		U	х	I _w		I _T	A cm ²		
	254x254x8 254x254x7		4300 1400	4860 3910	11.2	6.55 6.48	1100 898	379 307	1220 992	575 465	100	850 849	14.46 17.24	0.717 0.562	1000	02 7.6	113 93.1		
		T.																	
(b)	Buchl	ing (Che	ch															
	Buchl		_		as	it	is m	ore .	critic	cal	the	m y	-4.						
	Check	. Z-	2	axis					critic	cal	the	m y	ı-y.						
	Check (Same	L ₂ =	2 L	axis L bu	t I	2 <	Iy.))			the	m y	ı-y.						
	Check (Same	L ₂ =	2 L	axis L bu	t I	2 <	Iy.))			the	m y	y.						
	Check (Same	L ₂ =	2 L	axis L bu	t I	2 <	Iy.))			the	m y	y.						
	Check (Same • L	L ₂ =	2 	axis bu 0.85	t I x 5 ed)	z < 5.8	Iy.)) 4.9:	3 m		the	m y	l-y.						
	Check (Same	L ₂ =	2 	axis bu 0.85	t I x 5 ed)	z < 5.8	Iy.)) 4.9:	3 m		the	m y	l-y.						
	Check (Same • L	L ₂ =	2	axis bu 0.85 1-fix 03.9	t I x 9 ed) x ∫	239	Iy.)) 4.9: = 8	3 m				y.						
	Check (Same • L	L ₂ =	2	axis bu 0.85 1-fix 03.9	t I x 9 ed) x ∫	239	Iy.)) 4.9: = 8	3 m				y.						
	Check (Same • L	L ₂ =	2	axis bu 0.85 1-fix 03.9	t I x 9 ed) x ∫	239	Iy.)) 4.9: = 8	3 m				y.						
	Check (Same • L • λ_{λ}	L ₂ =	2 L ₁ O(pin	axis bu 1.85 1-fix 13.9 4.9	t I x 5 ed) x 5 x 10	239	Iy)) 4.93 = 8 1 6.8	3 m 6.8	0	. 86		y.						
	Check (Same • L • λ_{λ}	L ₂ =	2 L ₁ O(pin	axis bu 1.85 1-fix 13.9 4.9	t I x 5 ed) x 5 x 10	239	Iy)) 4.93 = 8 1 6.8	3 m 6.8	0	. 86	7							
	Check (Same • L • λ ₂ • λ	L ₂ =	2	axis bu .85 -fix 3.9	t I x sed) x J 260. 256.	235 275 3	Iy) =) 4.93 = 8 1 6.8	3 m 6.8	0	. 86	7	Curve	2 @					
	Check (Same • L • λ ₂ • λ	L ₂ =	2	axis bu .85 -fix 3.9	t I x sed) x J 260. 256.	235 275 3	Iy) =) 4.93 = 8 1 6.8	3 m 6.8	0	. 86	7	Curve	2 © 0.49					

•
$$\phi = 0.5 \left[1 + 0.49 \left(0.867 - 0.2\right) + 0.867^{2}\right] = 1.039$$
• $\chi = \frac{1}{1.039 + \sqrt{1.039^{2} - 0.867^{2}}} = 0.621$
• N_{b} , R_{c} = $0.621 \times \frac{(113 \times 10^{-4})(275 \times 10^{6})}{1.0} \times 10^{-3} \, kN$

= $1930 \, kN > N_{Ed} = 1304 \, kN$
• N_{c} = $1304 \, kN$
• N_{c} = $1930 \, kN > N_{Ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed} = 1304 \, kN$
• N_{c} = $1930 \, kN > N_{ed$

