Q1

Test of Independence

 $H_0:$ Perceptions of PMDs being allowed on footpath and respondents' personal income are independent of each other

H₁: Otherwise

	Level of Personal Income			
To allow PMDs on Shared Footpath	Low	Middle	High	Total
Yes	60	120	420	600
No	100	100	200	400
Total	160	220	620	1000

Expected frequency = $\frac{Column Total \times Row Total}{Sample Size}$, as tabulated below:

	Level of Personal Income		
To allow PMDs on Shared Footpath	Low	Middle	High
Yes	96	132	372
No	64	88	248

Degree of Freedom, v = (2 - 1)(3 - 1) = 2

 χ^2 observed = Sum of $\left(\frac{(Observed Frequency-Expected Frequency)^2}{Expected Frequency}\right)$

χ^2	$(60-96)^2$	$(100 - 64)^2$	$(120 - 132)^2$
(obs	96	64-	(32
	$(100 - 88)^2$	(420-372) ²	(200-248) ²
	22	372	248
=	51.96		
T ² critical	= X ² _{0.05} ,1	v=2 = 5.991	
	,,	ž.	
Since	η ² obs >	\mathcal{R}^2 critical , H	o is rejected.

Since H_0 is rejected, this means that there is insufficient evidence at 5% level of significance that the perceptions of PMDs being allowed on footpath and respondents' personal income are independent of each other.

Q2

Q2)	Unsignalised	Intersection	
	J	4	
	Rank / Priority	Movement	5
	1	2,5	
	2	1,9	
	3	7	e Cern
	N There is a star		
	Movement 1 (R	lank 2)	
	Vc,1, 5% V5	= 480 veh/h	han an a
	$C_{m,1} = C_{p,1}$	= 843 ven	/h //
	A. C.		
	Movement 9	(Rank 2)	
	$V_{c,q} = \frac{V_5}{N}$	$=\frac{480}{2}=$	240 ven/h
	$C_{m,q} = C_{p}$,9 = 793 v	en/h
Mov	cment 7 (Ran	k 3)	ulle d'arra Al Arrigina
V	$c_{,7} = V_5 + 2$	$Y_1 + \frac{V_2}{N}$	
	= 480 + 2 (220)+ 700	= 1270 veh/h
C	p17 = 193 ve	n/h	
(m,7 = 193 ($1 - \frac{220}{843} =$	142 veh/h
	L	Po, 1	7

	CSH	
	100 + 110	
	$\frac{100}{793} + \frac{110}{142}$	
÷	= 233 veh/h "	

Q3 Traffic Flow Models

(a)

Four Limitations of Macroscopic Traffic Flow Models:

- 1. Deficiencies over some portion of density range
- 2. Tend to be problematic at boundaries
- 3. Inability to track well the measured field data near capacity conditions
- 4. Has no bearing on driver behaviour

(b)

Limitations of Single-Regime Underwood's Model:

- Speed never reaches zero until jam density goes to infinity
- Model is unsatisfactory for high-density flow
- Like many other single-regime models, it exhibits the following key limitations:
 - Deficiencies over some portion of density range
 - Problematic at boundaries
 - Does not track the measured field data well, especially near capacity conditions.

(c)

Q4 Signalised Intersection

Proposed Pl	noises =			
7				
m t	m3 ~ C_m4	m5 m6	$m_7 m_8$	
~ 		$\uparrow\uparrow$	~	
Phase A	Phase B	Phase C	phase D	

Traffic Volume:	Saharahun Flow:	Flow Raho (1/s)
V1 = 1300	S1 = 525 (3×3.5) = 5512.5	0.236
$V_2 = 1245$	$S_2 = 5512.5$	0.226
V3 = 396	$S_3 = \frac{1800}{1 + \frac{1.52}{16}} = 1644$	0.241
V4 = 359	$S_4 = 1644$	0.218
V ₅ = 792	$S_5 = 525(2 \times 3.5) = 3675$	0.216
$V_6 = 832$	S6 = 3675	0.226
V7 = 264	$S_7 = 1644$	0.161
V8 = 228	S8 = 1644	0.139
		Z'yc = 0.864

L = 4(2) + 4(1) -	L	= 4	(2)	+	4 (1) =	129
-------------------	---	-----	-----	---	------	-----	-----

$\frac{C_0 = \frac{1.5(12) + 5}{1 - 0.864} = 169.3 \approx 170.5$
G = 170 - 4(4) = 1548
Allocate Green Time:
$G_A = \frac{0.236}{0.864} \times 154 = 42.13 = 725s$
$G_{B} = \frac{0.241}{0.864} \times 154 = 43.0 \text{ s}$
$G_c = \frac{0.226}{0.864} \times 154 = 40.3s > 32s$
$G_0 = \frac{0.161}{0.864} \times 154 = 28.7s$

Discussion: The cycle time obtained is typical of a 4-phase signal control and the green time allocated is sufficient for pedestrians to cross for both minor and major road crossing.

Q5

Two-Way Segment Analysis for Two Lane Highways

Q5) Avg. Travel speed (ATS).
$f_G = 0.99$, $f_{HV} = \frac{1}{1+0.18(1.5-1)+0.2(1.1-1)} = 0.9009$
$V_p = \frac{2300}{0.99 \times 0.9009 \times 0.91} = 2834 < 3200$
Highest Directional Flow Rate = 1417 pc/h < 1700
FFS = 100 km/h
ATS = 100 - 0.0125 (1417) - 0.8 = 81.5 km/h
PTSF:
$f_G = 1.00$, $f_{HV} = \frac{1}{1+0.18(1-1)+0.2(1-1)} = 1$
$V_p = \frac{2300}{0.91} = 2527 < 3200$
Highest Directional Flow Rate = 1264 pc/h < 1700
$BPTSF = 100 (1 - e^{-0.000879} (2527)) = 89.15\%$
$PTSF = 89.15 + \left(-\frac{527}{600} \times 0.7\right) + 1.8 = 89.15 + 1.185$
= 90.3%
⇒Los E.

V/C ratio = 2834/3200 = 0.886

Comment: The level of service as obtained using two-way segment for the two-lane rural highway segment is E which is near the capacity conditions, as computed from the V/C ratio above.

Q6(a)

Time I	Period	10-min volume (veh/10min)	Meter Cycle (s)	Departure Rate (veh/10min)
6.30	6.40	80	6	100
6.40	6.50	90	10	60
6.50	7.00	100	12	50
7.00	7.10	60	10	60
7.10	7.20	70	6	100
7.20	7.30	50	6	100

Time	Arrival (Cumulative)	Departure (Cumulative)	Queue Length
0	0	0	0
10	80	100	-20
20	170	160	10
30	270	210	60
40	330	270	60
50	400	370	30
60	450	470	-20

100 + 6x = 80 + 9xx = 6.67 Time the queue begins = 0640 + 6.67mins = <u>0647</u>

370 + 10x = 400 + 5xx = 6 Time the queue ends = 0720 + 6mins = <u>0726</u>

Maximum queue length occurs at 0700 and 0710 = 60 vehicles

Q6(b)

Inelastic Demand – Change in price has little effect on demand

Elastic Demand – Change in price has large effect on demand

Q6(c)

Congestion \rightarrow Public Pressure to Increase Capacity \rightarrow New Capacity \rightarrow Movements become easier \rightarrow Urban sprawl becomes favoured \rightarrow Average length of movements increase \rightarrow New Demand generated \rightarrow Number of movements increase further \rightarrow **More Congestion**

- END -