CV1012 Semester 1 2022-2023 Examination
By: Cynthia oktaviani Pantoro

1. (a) $\rho_{w} g\left(d_{1}+\rho_{w} g(0.1)-\rho_{e} g(0.9)=0\right.$

$$
\begin{aligned}
& d_{1}=\frac{\rho_{p}}{\rho_{w}}(0.9)-0.1 \\
& d_{1}=0.89 \mathrm{~m} / \mathrm{l}
\end{aligned}
$$

(b) By Archimedes' principle,

$$
\begin{aligned}
\text { Weight of buoy } & =\text { weight of water displaced } \\
1000 & =8 w g V_{\text {displaced }} \\
1000 & =1000 \mathrm{~g}_{\text {displaced }} \\
V_{\text {displaced }} & =0.102 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B M=\frac{I_{y y}}{V_{\text {oucplaced }}}=\frac{\pi R^{4}}{4} \times \frac{1}{V_{\text {ateplaced }}} \\
& B M=\frac{\pi \times 0.6^{4}}{4 \times 0.102}=0.997
\end{aligned}
$$

Submerged height $=\frac{0.102}{\pi \times 0.6^{2}}=0.0902 \mathrm{~m}$

$$
B G=0.25-\frac{0.0902}{2}=0.2049
$$

\therefore Since $B M>B G$, the buoy is stable.
(c) Weight of buoy $+W_{1}=\rho_{w} g V_{\text {displaced }}$

$$
\begin{aligned}
& 1000+2000=(1000)(9.81)\left(V_{\text {displaced }}\right) \\
& 3000=(9810)\left(V_{\text {displaced }}\right) \\
& V_{\text {displaced }}=0.3058 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& B M=\frac{\pi R^{4}}{4} \times \frac{1}{V_{\text {displaced }}}=\frac{\pi(0.6)^{4}}{4} \times \frac{1}{0.3058} \\
& B M=0.3329
\end{aligned}
$$

Calculating centre of gravity of the
Circular buoy + weight w_{1} :

$$
C G=\frac{(1000)(0.25)+2000(0.5+0.05)}{1000+2000}=0.45 \mathrm{~m}
$$

$$
\text { Submerged height }=\frac{\text { Vdisplaced }}{\text { Base area }}=\frac{0.3058}{\pi \times 0.6^{2}}
$$

$$
=0.27 \mathrm{~m}
$$

$$
B G=0.45-\frac{0.27}{2}=0.315
$$

\therefore Since $B M>B G$, the buoy with the weight on top is stable

Initial volume of water in $1(a)=2 \times 2 \times d_{1}=3.56 \mathrm{~m}^{3}$
We know that the submerged height of the buoy is 0.27 m . Therefore, we can calculate the volume of water from the surface of the water down to a depth of 0.27 m . which is the same height as the base of the buoy.

$$
V_{0.2 .7}=(\text { water surface area })(0.27)
$$

$$
=\left(4-\pi \times 0.6^{2}\right)(0.27)
$$

$$
=0.775 \mathrm{~m}^{3}
$$

Since the volume of water does not change, the volume of water below the depth of 2.7 m is $(3.56-0.775) \mathrm{m}^{3}$

$$
\begin{aligned}
3.56-0.775 & =\text { Tank base area } \times h \\
2.705 & =4 h \\
h & =0.696 \mathrm{~m} \\
\therefore d_{3} & =h+0.27=0.966 \mathrm{~m} / /
\end{aligned}
$$

To calculate H_{3} and L_{3} :

$$
\begin{aligned}
& \rho_{w} g d_{3}+\rho_{w} g(0.1+\Delta y)-\rho_{e} g(0.8+\Delta y+0.1+\Delta y) \\
& 9466.8+980+9810 \Delta y-9702-21560 \Delta y=0 \\
& 11750 \Delta y=744.8 \\
& \Delta y=0.063 \mathrm{~m} \\
& \therefore H_{3}=0.8+\Delta y=0.863 \mathrm{~m} / \mathrm{l} \\
& L_{3}=0.1+\Delta y=0.163 \mathrm{~m}
\end{aligned}
$$

(2.) (a)

$$
A_{1} V_{1}=A_{2} V_{2}
$$

$$
\begin{aligned}
\pi(50)^{2} v & =\nabla(15)^{2} V_{2} \\
v_{2} & =\frac{100}{9} v
\end{aligned}
$$

$$
\begin{aligned}
\frac{p_{1}}{r}+\frac{v_{1}^{2}}{2 g}+z_{1} & =\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2} \\
\frac{104}{9800}+\frac{v^{2}}{2 g}+0 & =0+\frac{\left(\frac{100}{9} v^{2}\right.}{2 g}+0.2 \\
6.241 v^{2} & =0.8204 \\
v & =0.3626 \mathrm{~m} / \mathrm{s} / 1 \\
Q & =\pi(0.015)^{2}\left(\frac{100}{9}\right)(0.3626)=0.0284 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& Q=0.1 \mathrm{~m}^{3} / \mathrm{s} \\
& V_{1}=\frac{Q}{\frac{7}{4} D^{2}}=0.509 \mathrm{~m} / \mathrm{s} \\
& V_{2}=\frac{Q}{\frac{\pi}{4} d^{2}}=50.93 \mathrm{~m} / \mathrm{s} \\
& \frac{P_{1}}{\gamma}+\frac{v_{1}{ }^{2}}{2 g}+z=\frac{P_{2}}{\gamma}+\frac{V_{2}{ }^{2}}{2 g}+z \\
& \frac{p_{1}}{9000}+\frac{0.509^{2}}{2 g}+0=0+\frac{50.93^{2}}{2 g}+0 \\
& P_{1}=1.295 \times 10^{6} \mathrm{~Pa} \\
& F-P_{1}\left(\pi \times \frac{D^{2}}{4}\right)=\rho Q\left(V_{2}-V_{1}\right) \\
& F=(1295000)\left(\pi \times \frac{0.5^{2}}{4}\right)+1000(0.1)(50.93-0.509) \\
& F=259 \mathrm{kN}
\end{aligned}
$$

(3) (a) By Froude's Number Similarity,

$$
\begin{aligned}
\frac{V_{m}}{\sqrt{g L_{m}}} & =\frac{V_{p}}{\sqrt{g L_{p}}} \\
\frac{V_{m}}{V_{p}} & =\sqrt{\frac{L_{m}}{L_{p}}}
\end{aligned}
$$

By Reynold's Number Similarity,

$$
\begin{aligned}
\frac{V_{m} L_{m}}{V_{m}} & =\frac{V_{p} L_{p}}{L_{p}} \\
\frac{V_{m}}{V_{p}} & =\frac{V_{m} L_{m}}{V_{p} L_{p}}
\end{aligned}
$$

For the model study to satisfy both the Reynold's and Froudels number similarity, we use the velocity scale obtained from Froude's number in the fluid kinematic viscosity scale obtained using the Reynold's Number Similarity.
.... cont in next page

Therefore, $\quad \frac{V_{m}}{r_{p}}=\sqrt{\frac{L_{m}}{L_{p}}} \times \frac{L_{m}}{L_{p}}$

$$
\frac{V_{m}}{V_{p}}=\left(\frac{L_{m}}{L_{p}}\right)^{3 / 2} / / \quad \text { (PROVEN) }
$$

(b) By Froude Number's Similarity, $\frac{V_{m}}{V_{p}}=\sqrt{\frac{L_{m}}{L_{p}}}$

$$
\begin{aligned}
\frac{Q_{m}}{Q_{p}}=\frac{A_{m} V_{m}}{A_{p} V_{p}} & =\left(\frac{L_{m}}{L_{p}}\right)^{2}\left(\frac{V_{m}}{V_{p}}\right) \\
& =\left(\frac{L_{m}}{L_{p}}\right)^{2}\left(\sqrt{\frac{L_{m}}{L_{p}}}\right) \\
& =\left(\frac{L_{m}}{L_{p}}\right)^{5 / 2}
\end{aligned}
$$

since $\frac{L_{m}}{L_{p}}=\frac{1}{25}, \quad \frac{Q_{m}}{Q_{p}}=\left(\frac{1}{25}\right)^{5 / 2}$

$$
\begin{aligned}
& Q_{m}=\left(\frac{1}{25}\right)^{5 / 2}(200) \\
& Q_{m}=0.064 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

(c) (i) At (b) the pump was operating at speed of 1000 rpm when $Q_{(c)}=\frac{1}{2} Q_{(b)}$ and the same pump is used $\left(D_{(b)}=D_{(c)}\right)$

$$
\begin{aligned}
\frac{Q_{(c)}}{\omega_{(c)} D_{\left(t^{5}\right.}} & =\frac{Q_{(b)}}{\omega_{(b)} D_{(b)^{2}}} \\
\frac{\frac{1}{2} Q_{(5)}}{\omega_{(c)}} & =\frac{Q_{(5)}}{1000} \\
\omega_{(c)} & =500 \mathrm{rpm}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{g h_{(b)}}{\omega_{(b)} D_{(b)^{2}}} & =\frac{g h_{(c)}}{\omega_{(c)}^{2} D(c)} \\
h_{(c)}^{2} & =\left(\frac{\omega_{(c)}}{\omega_{(b)}}\right)^{2} h_{(b)} \\
h_{(c)} & =\left(\frac{500}{1000}\right)^{2} h_{(b)} \\
h_{(c)} & =\frac{1}{4} h_{(b)}
\end{aligned}
$$

\therefore At the new speed of 500 rpm , the operating head of the pump will be $\frac{1}{4}$ of the operating head when the speed is 1000 rpm . This result is obtained with the assumption that gravity remains constant during both situations.
(4) (a)

$$
\begin{aligned}
& \varepsilon=0.2 \mathrm{~mm} \\
& \frac{\varepsilon}{D}=\frac{0.0002}{0.5}=4 \times 10^{-4}
\end{aligned}
$$

\longrightarrow From the Moody Diagram, for wholly turbulent flow regime $f=0.016$ when $\frac{\varepsilon}{D}=4 \times 10^{-4}$

$$
\begin{aligned}
& \frac{P_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{P_{B}}{r}+\frac{V_{B}^{2}}{2 g}+z_{B}+h_{f}+h_{\text {entr }}+h_{\text {exit }} \\
& 0+0+38=0+0+8+\frac{f l V^{2}}{2 g D}+0.5 \frac{v^{2}}{2 g}+\frac{v^{2}}{2 g} \\
& 30=\frac{v^{2}}{2 g}\left(\frac{f L}{D}+1.5\right) \\
& 30=\frac{V^{2}}{2 g}\left(\frac{(0.016)(200)}{0.5}+1.5\right) \\
& V=8.6273 \mathrm{~m} / \mathrm{s} \\
& Q=\frac{\pi}{4} D^{2} V=1.69 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{V}
\end{aligned}
$$

(b)

$$
\begin{aligned}
8+H & =38+h_{f} \\
8+40-24 Q^{2} & =38+\frac{8 f L Q^{2}}{g \pi^{2} D^{5}} \\
10 & =Q^{2}\left(24+\frac{8 f L}{g \pi^{2} D^{5}}\right) \\
Q^{2} & =0.30798 \\
Q & =0.55 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

(c)

