QI	H = 6.0 m		Date:	No:
	Coulomb Method since	8 = 26°	ſ	Sin (97.6-35)
(a)	(i) $\overrightarrow{10.8m} $ $\gamma =$	$\tan^{-1}\left(\frac{0.2}{6.0}\right) = 7.59$	15° (ii)	Sin 97.6
	lan d=	90° + 7.595° = 9-	7.6° / ~ ~ ~	SID(976+26) + SID(350+260) SID(35-23)
	$\varphi' =$	35°		Sm(97.6-23)
	. 8 =	26°	= 0	442 /
	<i>β</i> = 2	13°		
(6)	(i) DA1C2 (DA16)			
	Vanable Unfavourable	⇒ x 1.30	1	7
	$P_a = \frac{1}{2} (6.0)^2 (17)$	(0.442)= 135.252	kN /m	Pa
	Pah = 135.262 a	s (26 + 7. 595) = 1	12.66 KN/m	128
	Pay = 135.252 SI	n (26+7.595) = 7	14.84 kN/m	- 11 7
	Weight of concrete	Retaining Wall		82.40
	= 0.5 (0.7+2.3)(6	0) # x 24 = 216k	N/m 2	>1 K-0.267m
		(216) tan (216+	74.84) tan 26°	1059 > 1 >041
	OUP for stiding =		112.66	-1.251 / 1 -/ UK!
	(ii) Force Component	Magnitude (EN/m)	Lever Arm to Toe	m) Moment (thm/m)
	Pah	112-66	2-0	225-32
	Pav	74.84	2.033	152.15
	Weight of Wall	216	1-15	248.4
	ODE Ac	2 48-4	+ + 152.15 - 1 7-	
	Uni to over	2 z	25-32	
(c)	Rankine Ka =	$\frac{1-\sin \varphi'}{1+\sin \varphi'}$		
	⇒ When there is	no interface fric	non between retain	ned suil and the wall
	(i.e. 8=0°)			
	When the slop	e of the backt	ril is De Ci.e. 1	3 = 0")
	When the Wal	I back is ven	$icol Ci.e. \propto = 90$	°)

(d)

For Kerisel and Absi, the Ka values are almost equivalent to that of Coulomb's method, but it is slightly higher, meaning the active earth pressures will be more conservative as compared to Coulomb's method. On the other hand, the Kp values for Kerisel and Absi are lower than that of Coulomb's method. In general, this means that Kerisel and Absi method is more conservative since it overestimates the active earth pressures and underestimates passive earth pressures which are usually resistive for a retaining wall design.

Q2	(a)(i) N	et waker pi	ressure at l	G = 7	$w \times 3 = 30 k Pa $ 24.71 k N/m ²	
	(ii) j	$avg = \frac{3}{2}$	2x7+3) =	0.1765		
	X	a' = (19 - 1) a' = (19 - 1)	10) + 0.1765 10) - 0.1765	5(10) = 5(10) =	$= 10.765 \text{ kN/m}^3 = 8 \text{ eR}'$ $= 7.235 \text{ kN/m}^3 = 8 \text{ eR}'$	
	(iji)	Using DA1	$C2, \varphi'_d =$	tan-1	(tan 36'/1.25) = 30-17"	
		Variable Uni $K_{a} = \frac{1-sn}{s}$	Favourable → 30,17° = 0.3	x 1.30	r = 1/v = 3.07	
		9 1 + 3	N/m ²	<i>"</i>	p /ka 502/1	
	(6)(1)	111		$\rightarrow 0'_a$	= (4.0x17)(0.331) = 22.508 KPA	
	1-5m	$ \rightarrow$				
	2.5m		0			
		×		1	N ⁻	
	<u>V</u>	3m		1_	5 -> Lateral Woker Pressure (1	NC+)
			1 3	$ \rangle$	$= T_w \times 3 = 30 \text{ kPa}$	21.
		7m			0 24.71 kPa 4	- using 26 tg
					/	= 2(7)(3) × 10
		1×			\bigvee	2(7) +3
Ĺ	PASSIVE		k→	15.63 KP4	→ 22.508 + (10×10.765)(0.331)	= 24.71 kPa
	2017 pressi = (7x7.235	ure 5)(3.02)	-> lateral press	iure	= 22.508 + 35.63 = 58.14 kPg	
	= 152.9 ki	2a	from surcha	rge = 1-	3 × 17 × 0.331	
				= 7	.32 kPa	

(b) (ii)

Component	Force (KN/m)	Lever Arm	to Tie Rod (m) M	oment (knm/m)
1	(7.32)(14) = 102.48	5.5		563-64
2	0.5(22.508)(4) = 45.02	(² / ₃ ×4) -	-1.5 = 1. 67	52.54
3	(22.508)(3+7) = 225.08	2,5+3+2	= 7.5	1688.1
4	0-5(35-63)(3+7) = 178-15	9.167		1633.1
6	0.5 (30)(3) = 45 37.065	(² / ₃ ×3)+2.5	5=4.5 166.8	202.5
6	0.5 (30)(7) = 105 86.485	7.833	6 77.44	822.47
(i)	0.5 (152.9)(7) = 535.15	10.167		5440.87
ODF	for overnuming = ZMR = ZMR	5440-87 4962-35 = 1.096	> 1 ⇒ 0K!	
(c) Force m	each tie nod = 1.5 × (102	2-48+45.02+225.08+178.15	+ 45 + 105 - 535-15)	
	= 1.5 × (165	(.58) Ans:	== 139.13 (1.5) = 20	8.7 kN
	= 248.37	F= 207.4 KN	T = 102.48 +45.02 +22	5.08
		T = 138.28 KN/m	+178.15 + 37.065 -535.15 = 139.	+ 86. 485 13 KN/M

CV4110 Excavation and Retaining Walls Semester 1 Examination 2019-2020 Suggested Solutions by Lim Kai Jian

Note: There are two methods to estimate the net water pressure. The worked solution in black is using a more conservative method which underestimates the factor of safety and overestimates the force in each tie rod. The official numerical answers provided suggests that the net water pressure is worked by using the following formula: $\left(\frac{2ba}{2b+a}\right) \gamma_w$, which is also worked out in blue.

Both solutions are acceptable.

H=20m, B=40m, Surcharge g=25KPa	Date: No:
(a) Allowable Smit Load = 3000KN	For other levels:
Defemine the maximum horizontal struts	pacing Shut Spacing = 3000 (25+103)(4)
11111 9=25KPa Class BF	= 5.64 m
4m Gm Gm Gm	Maximum Force (KN/m) which occurs
4m 4 4m	at the 1st level smat
20m 2m - Ctay 1	=(25+108)(6)=798 kN/m
$\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}$	798 × Strut Spacing ≤ 3000 KN
4 4m	Strut spacing $\leq \frac{3000}{798}$
5m 25kPa 0.3 Tave H	= 3.759 m
$k_{a} = 1 = 0.3(18)(20)$	Maximum Wall Bending Moment
$\varphi_{\mu} = 0 = 108 \text{ kFg}$	$\approx \frac{P(d_{mox})^2}{ID}$
	= (25+108)(4)2 × to = 212.8 kNm/m
(b) Wall stiffness $E_1 = 4.7 \times 10^4 \text{ kN} \text{ m}^2/\text{m}$ $\gamma_w = 10 \text{ kN}/\text{m}^3$	
Terzaghi Method FS for Basal Hea	ve
= 5.7 Cub B1	$B_1 = 0.7B = 0.7(40) = 23m$
JHB1 + 9B1 - Cun H	$C_{uh} = 80 \text{ kPa}, C_{ub} = 150 \text{ kPa}$
5-7 (150)(28)	H=20m, J= 18 KN /m3
(18)(20)(28) + (25)(28) - (80)(20)	
= 2.608	
From Clough et. 91- Chan,	
for System Stiffness = (4.7×109)/(10	×4 ⁴) = 18.4
(Shmax/He) = 0.5%	
Sh max = 0.5%	6 × 20 = 0.1 m = 100 mm
(c) Scheme B is likely to lead to larger	wall deflections since the excavation
depth is always deeper as compared	to scheme A. The largest wall deflections
generally occur near the formation 1	larel, thus based on this idea, a larger
excavation depth with the same level	of stut restraint will result in greater
wall deflection and ground settlement	r

CV4110 Excavation and Retaining Walls Semester 1 Examination 2019-2020 Suggested Solutions by Lim Kai Jian

(d)	Alternative Design = 1.2m thick diaphragm wall
	Diaphragm wall is made of concrete and hence it is shifter than the flexible sheet
	pile wall. As such, the struct force will increase and hence max struct spacing reduces.
	On the other hand, since the system stiffness increases following the general trend
	of the Clough et. al. churt we would expect deflection to reduce, for a same
	Basal Heave factor of safety.

CV4110 Excavation and Retaining Walls Semester 1 Examination 2019-2020 Suggested Solutions by Lim Kai Jian

that gives rise to the uplift pressure on the block of soil that result in uplift failure.	Its
in uplift Agilure. Precive piezometer	
l'équiges E piezometer	
Inclinameters (In-Soil)	

- END -