. (a) A prism is submerged in water, which comprises a horizontal face (ABFE), three vertical faces ($A B C D, B C F, A D E$) and an inclined face (CDEF). The magnitudes of the average pressures acting on the different faces have the following relation:
(A) $p_{A B F E}>p_{B C F}=p_{A B C D}=p_{C D E F}$.
(B) $\mathrm{p}_{\mathrm{ABFE}}<\mathrm{p}_{\mathrm{BCF}}<\mathrm{p}_{\mathrm{ABCD}}<\mathrm{p}_{\text {DEF }}$.
(C) $\mathrm{p}_{\mathrm{ABFE}}<\mathrm{p}_{\mathrm{BCF}}=\mathrm{p}_{\mathrm{ABCD}}=\mathrm{p}_{\mathrm{CDEF}}$.
(D) $\mathrm{p}_{\mathrm{ABFE}}<\mathrm{p}_{\mathrm{BCF}}<\mathrm{p}_{\mathrm{ABCD}}=\mathrm{p}_{\mathrm{CDEF}}$.

Figure Q1(a)
(b) A large plate is moving between two large fixed plates, which contain a Newtonian fluid. The velocity distributions above and below the moving plate are all linear. The gap b_{1} is greater than the gap b_{2}. The relationship among are all linear. The gap b_{1} is greater than the gap b_{2}. The relationship among
the magnitudes of the shear stresses exerting on the plate surface at the four locations can be expressed as
(A) $\tau_{1}>\tau_{2}>\tau_{3}>\tau_{4}$.
(B) $\tau_{1}=\tau_{2}>\tau_{3}=\tau_{4}$.
(C) $\tau_{1}<\tau_{2}<\tau_{3}<\tau_{4}$.
(D) $\tau_{1}=\tau_{2}<\tau_{3}=\tau_{4}$.
(5 Marks)

Figure Q1(b)
(c) Three half-ball cups are positioned at the water surface in a water tank, with the opening upwards. Two of them are filled with water and oil, respectively, and the other is empty. All free surfaces of the fluids are of the same level. The wall thickness of each cup is very small. The oil density is less than the water density. The magnitudes of the fluid-induced pressure forces exerting on the inner and external wall are denoted by $\mathrm{F}_{\text {in }}$ and $\mathrm{F}_{\text {out, }}$ respectively. Which of the following statements is correct?
(A) $F_{\text {out, } 1}=F_{\text {out, } 2}=F_{\text {out, }}=F_{\text {in, }, 1}<F_{\text {in }, 2}<F_{\text {in, }, 3}$.
(B) $F_{\text {out }, 1}=F_{\text {out }, 2}=F_{\text {out, }, 3}=F_{\text {in }, 1}>F_{\text {in }, 2}>F_{\text {in }, 3}$.
(C) $F_{\text {out }, 1}>F_{\text {out }, 2}>F_{\text {out }, 3}$ and $F_{\text {in, }, 1}>F_{\text {in, }, 2}>F_{\text {in, }, 3}$.
(D) $F_{\text {out }, 1}=F_{\text {out }, 2}=F_{\text {out }, 3}$ and $F_{\text {in }, 1}<F_{\text {in, } 2}<F_{\text {in }, 3}$.
In this case, p depends only on h_{c}. Therefore, comparing h_{c} of each surface, we get (D) as the answer.
$\tau=\mu \frac{v}{b}$, so as y increases, τ decreases

The pressure on the bottom of each cup is constant (same depth below the surface). Since pressure is equal, F is also equal.

F exerted by equal volumes of liquid depends on its density.
Since $\rho_{\text {water }}>\rho_{\text {oil }}>\rho_{\text {air }}, F_{\text {water }}>F_{\text {oil }}>$ Fair

Figure Q1(c)
(d) A manometer is used to measure the pressure difference between point A and point B in a closed pipe. Three elevation differences, a, b and c, have the following possible relation:
(A) a $>$ b $>$ c.
(B) c $>$ a $>$ b.
(B) $\mathrm{c}>\mathrm{a}>\mathrm{c}>\mathrm{b}$.
(D) $\quad a=c>b$.

Figure Q1(d)

$$
\begin{aligned}
& P_{B}+\rho_{1} g(c+b-a)=P_{A} \\
& P_{A}+\rho_{1} g a-\rho_{2} g b-\rho_{1} g c=P_{B} \\
& \rho_{1} g(a-c)-\frac{\rho_{2} g b}{\rho_{1}}=-\rho 1 g(c+b-a) \\
&-(a-c)+\frac{\rho_{2}}{\rho_{1}} b=c+b-a \\
& \rho_{2} b=\rho_{1} b
\end{aligned}
$$

since $\rho_{2} \neq \rho_{1}$, thus $b=0$

$P_{B}+\rho_{1} g(c-a)=P_{A}$
Sine $P_{A}>P_{B}$
$P_{A}-P_{B}>0$

$$
\begin{aligned}
c-a & >0 \\
c & >a
\end{aligned}
$$

(e) A Venturi Meter is useful for measuring the flow rate in a flow system. The flow rate can be calculated based on
(A) the continuity equation only.
(B) the energy equation only.
(C) the continuity equation and energy equation
(D) the continuity equation, energy equation and momentum equation.
(2) (a) Bernoulli Eq. between (1) and (4)

$$
\begin{aligned}
0+\frac{V_{4}{ }^{2}}{2 g}+0 & =0+0+2 h \text { where } V_{3}=V_{4} \quad \text { (continuity eq.) } \\
2 h & =\frac{V_{3}{ }^{2}}{2 g}
\end{aligned}
$$

$\begin{aligned} & \text { Bernoulli's eq. between (1) and (3) } \\ & \frac{P_{3}}{\gamma}+\frac{V_{3}{ }^{2}}{29}+h=0 \\ & \frac{P_{3}}{\gamma}=-2 h-h=-3 h\end{aligned}$

Bernoulli's eq. between (1) and (2)
$0+0+h=\frac{P_{2}}{\gamma}+\frac{V_{2}{ }^{2}}{2 g}+0 \quad$ where $\frac{P_{2}}{\gamma}=\frac{P_{3}}{\gamma}$

$$
h=-3 h+\frac{v_{2}^{2}}{2 g}
$$

$$
4 h=\frac{1}{2 g}\left(\frac{D}{d}\right)^{4} V_{3}^{2}
$$

$$
4 K=2 K\left(\frac{D}{d}\right)^{4}
$$

$$
\left(\frac{D}{d}\right)^{4}=2
$$

$$
\frac{D}{d}=1.189 / /
$$

(2) (b) $0+0+h=0+\frac{v_{1}{ }^{2}}{2 g}+0$

$$
\begin{aligned}
\frac{v_{1}{ }^{2}}{2 g} & =h \\
v_{1}{ }^{2} & =2 g h \\
0+0+2 h & =0+\frac{v_{2}^{2}}{2 g}+0 \\
\frac{v^{2}}{2 g} & =2 h \\
v^{2} & =4 g h
\end{aligned}
$$

For tank to remain stationary, $\Sigma F=0$
$\Sigma F=\left[\rho Q V_{2}-\rho Q V_{1}\right]-0=0$

$$
\begin{aligned}
& \mathscr{Q _ { 2 } v _ { 2 } = \mathcal { P } a _ { 1 } v _ { 1 }} \\
& \frac{\pi}{4} d_{2}^{2} V_{2}^{2}=\frac{\pi}{4} d_{1}^{2} V_{1}^{2} \\
& d_{2}^{2}(4 g \hbar)=d_{1}^{2}(2 g h)
\end{aligned}
$$

$$
\left(\frac{d_{1}}{d_{2}}\right)^{2}=2
$$

$$
\frac{d_{1}}{d_{2}}=1.414
$$

(3) (a) C) $V_{m}=V_{p}$ (same fluid)
$\frac{V_{m} L_{m}}{V_{m}}=\frac{V_{p} L_{p}}{V_{p}}$
$\frac{V_{m}}{V_{p}}=\frac{L_{p}}{L_{m}}$ (PROVEN)
(i) $\frac{V_{m}}{\sqrt{g L_{m}}}=\frac{V_{p}}{\sqrt{g L_{p}}}$

$$
\frac{V_{m}}{V_{p}}=\sqrt{\frac{L_{m}}{L_{p}}} \text { (PROVEN) }
$$

(iii) For the model to satisfy both the Reynold number and Freude number's similarity, we use the viscosity scale obtained from Froude's number in the fluid kinematic viscosity scale from Reynold number's similarity

$$
\begin{aligned}
& \frac{V_{m}}{V_{p}}=\frac{V_{m} L_{m}}{V_{p} L_{p}} \\
& \frac{V_{m}}{V_{p}}=\left(\frac{L_{m}}{L_{p}}\right)^{3 / 2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& n=6 \quad m=3 \\
& n-m=3 \\
& \pi_{1}=\tau w \rho^{a} V^{b} D^{c} \\
& M^{0} L^{0} T^{0}=\left[M L^{-1} T^{-2}\right]\left[M L^{-3}\right]^{n}\left[L T^{-1}\right]^{b}[L]^{c} \\
& 0=1+a \quad 0=-2-b \quad 0=-1-3 a+b+c \\
& a=-1 \quad b=-2 \quad c=0 \\
& \therefore \pi_{1}=\frac{\tau_{w}}{P V^{2}} \\
& \therefore \pi_{2}=\frac{\rho V D}{\mu} \\
& \therefore \pi_{3}=\frac{\varepsilon}{D} \\
& \therefore \frac{\tau_{w}}{\rho V^{2}}=f_{1}\left(\frac{\rho V d}{\mu}, \frac{\varepsilon}{D}\right) \quad \text { (SHOWN) } \\
& \pi=\frac{\tau_{w}}{\rho V^{2}} \\
& \pi=\sqrt{\frac{\tau_{w}}{\rho}} \cdot \frac{1}{V}
\end{aligned}
$$

$$
\pi=\frac{V}{u_{*}} \Rightarrow V \text { and } u_{*} \text { has the same dimensions }
$$

Therefore, $\frac{\rho V d}{\mu}$ can be written down as $\frac{\rho u_{*} D}{\mu}$

$$
\therefore \frac{v}{v_{*}}=f_{2}\left(\frac{p u * D}{\mu}, \frac{\varepsilon}{D}\right) \text { (SHOWN) }
$$

(3)
(c) (i)

$$
\begin{aligned}
& \frac{\varepsilon}{D}=\frac{8 \times 10^{-5}}{0.1}=0.0008 \\
& R e=\frac{2.5 \times 0.1}{10^{-6}}=250000 \\
& \text { From M.D. } f=0.02 \\
& \frac{P_{h}}{\gamma}=\frac{v^{2}}{2 g}+50+h_{f}+h_{L} \\
& \frac{P_{h}}{\gamma}=\frac{40^{2}}{2 \times 9.81}+50+\frac{(0.02)(60)(2.5)^{2}}{2 \times 9.81 \times 0.1}+0.04\left(\frac{40^{2}}{2 \times 9.81}\right) \\
& P_{h}=1.36 \mathrm{MPa}
\end{aligned}
$$

(ii)

(4) (a) 1. Re <2100, in laminar flow regime, f depends on $R e$ only
2. $2100<R e<4000$, in transition range. f is uncertain
3. Re >4000, but not in wholly turbulent flow regime. f depends on Re and $\frac{\varepsilon}{D}$
4. Re very large, in wholly turbulent flow regime. f depends on $\frac{\varepsilon}{D}$ only
(4) Ub) $Q=\frac{\pi}{4} d^{2} v$
$V=\frac{4 Q}{\pi d^{2}}$
$13.22=\frac{f(1000)\left(8 \times 0.5^{2}\right)}{\pi^{2} g d^{5}}$
$13.22=20.657 \frac{f}{d^{5}}$
Assume $f_{1}=0.02$

$$
d^{5}=\frac{20.657 \times 0.02}{13.22}
$$

$$
d=0.5 \mathrm{~m}
$$

$$
\frac{\varepsilon}{0}=0.0011 \mathrm{~m}
$$

$$
R_{e}=\frac{4 \times 0.5}{\pi \times 0.5 \times 10^{-6}}=1.27 \times 10^{6}
$$

From M.D. $f_{2}=0.0195$

$$
d^{s}=\frac{20.657 \times 0.0195}{13.22}
$$

$d=0.497$
$\frac{\varepsilon}{0}=0.0011$
$R e=1.28 \times 10^{-6}$
From M. $f_{3}=0.0195=f_{2}$

$$
d=0.497 \mathrm{~m} / \mathrm{l}
$$

(4) (c) i) $Q_{2}+Q_{3}+Q_{4}=0.8 \mathrm{~m}^{3} / \mathrm{s}$

$$
\rightarrow Q_{2}+\frac{1}{\sqrt{2}} Q_{2}+\sqrt{2} Q_{2}=0.8
$$

$$
\begin{gathered}
h_{f_{2}}=h_{53}=h_{f_{4}} \\
k_{2} Q_{2}^{2}=k_{3} Q_{3}{ }^{2}=k_{4} Q_{4}{ }^{2} \\
300 Q_{2}{ }^{2}=600 Q_{3}{ }^{2}=150 Q_{4}{ }^{2} \\
Q_{3}{ }^{2}=\frac{1}{2} Q_{2}{ }^{2} \quad Q_{4}{ }^{2}=2 Q_{2}{ }^{2} \\
Q_{3}=\frac{1}{\sqrt{2}} Q_{2} \quad Q_{4}=\sqrt{2} Q_{2}
\end{gathered}
$$

$$
\begin{aligned}
& Q_{2}=0.256 \mathrm{~m}^{3} / \mathrm{s} / / \\
& Q_{3}=0.181 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{s} \\
& Q_{4}=0.363 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{l}
\end{aligned}
$$

$$
\text { (i.) } Q_{\text {new }}=0.8 \mathrm{~m}^{7} / \mathrm{s} \quad Q=\frac{\pi}{4} d^{2} v
$$

$$
\begin{aligned}
& h_{f_{2}}=\frac{f L 8 Q^{2}}{g \pi^{2} d^{5}} \\
& 300(0.256)^{2}=(0.02) \frac{(800)\left(8 Q^{2}\right)}{g d^{5} \pi^{2}} \\
& d^{5}=0.0428 \\
& d=0.532 \mathrm{~m} / \mathrm{l}
\end{aligned}
$$

